PURDUE

UNIVERSITY

A Theoretical and Experlmental Study of Surface
Forces in Adhesion of Particles to Thin Films

Ravi Jaiswal, Caitlin Kilroy, Gautam Kumar
Prof. Stephen Beaudoin

Purdue University



Applications

* Surface forces play a decisive role in many surface-/interfacial processes
— Colloidal/emulsion stability
v" Relevant to pharmaceutical, food and coating industries
— Surface modification of thin films or substrates to promote or reduce adhesion
v biosensors, oil recovery, cleaning of micron-/nano-scale contaminants

* Our focus: Microelectronic manufacturing
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Motivation/Objective
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e Challenge
— 99.99% cleaning efficiency without surface damage or film-loss

v" Contaminants as small as 7nm

* Need
— Detail understanding of particle (um- to nm- sized) adhesion in these systems

— Estimation of required removal force window

— Optimal cleaning process parameters 3




Particle Adhesion: Theory,
Experiments and Modeling Approach




Fundamental Forces in Particle Adhesion
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i\/ vdW and ES forces are the major contributors in adhesion

v" In fact, vdW force is the most dominating force in close-contact  °



van der Waals (vdW) Force
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* vdW forces are always present

* Interactions between dipoles in particle, solution (if present) and surface
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Electrostatic (ES) Force
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The thickness of EDL depends
on the solution and the surface
of interest, typically 10s to 100s
of nm
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* Inair, a particle and surface out of contact have fixed potentials
* Insolution, a particle and surface attract counter-ion clouds and form double layers
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Approach: Experimental

Sample preparation AFM force measurement
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‘ v'Surface heterogeneity leads to a distribution of adhesion forces
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Particle
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Model Inputs
Identify key parameters that
control adhesion force
and quantify their effects

!

Needs:
- Geometry
- Surface morphology

- Surface composition

Approach: Theoretical

e Unusual geometry

« Random surface morphology

* Chemical heterogeneity

Model Prediction
Distribution of
forces

Model Validation
Compare model prediction
with experimental
measurement
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Needs:

- Computational approach

Net predicted force:

|:Adhesion: deW+ I:ES




Modeling Approach

* Surface Characterization- Geometry

« Geometry

- Irregular

Top-view of the FESEM micrographs of AlL,O,
constructed surface

PhotoModeler wire-mesh
(Top-projection)
(Height data are in nanometer)

« Geometry
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Modeling Approach

 Surface Characterization- Roughness
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Modeling Approach

Geometry

Surface morphology

vdW Force Model

Contact Surfaces I

Force Calculation

(Computational Approach)
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van der Waals (vdW) and Electrostatic (ES) Force
Model Description
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Adhesion in Micron-Scale Particulate-Substrate System

* Particle geometry and particle and substrate roughness were measured and modeled

Regular geometry Irregular geometry

Silica particle (~3um) on TaON in air Silicon nitride particle (~4pum) on
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* Range of predicted force is wider than measured

v" Measured forces are in the range of model predictions



Adhesion in Nano-Scale Body-Substrate System

* Silicon nitride AFM probe on silicon dioxide surface in air and DI water
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F’ av-Measured* 2.32nN F, av-Measured- 11.67 nN
F’ av-Predicted* 2.75nN F, av-Predicted- 12.47 nN

v Adhesion model is capable of predicting the adhesion forces for systems as
small as few 10’s of nm

@, v DI water screens the net adhesion force (vdW force)
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Conclusions

* Adhesion forces for most of the microelectronic systems
can be described by considering only vdW and ES
Interactions

e Continuum approximation based adhesion model can
describe the adhesion force for systems of sizes down to
few 10’s of nm
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