

Introduction to CFD

© 2018 Siemens Product Lifecycle Management Software Inc.

CT09105_CM13_1

Section 1: Introduction

- What is CFD?
- CFD in the context of a company
- Historical development of CFD
- CFD Workflow
- Introduction to Siemens PLM Software

Why do CFD?

Economical and technical motivations

Obtain results comparable to prototyping / experiments, but with a reduction of time and cost.

SIEMENS

Obtain more in-depth results, better understanding of physical phenomena.

Lyophilization process is currently:

Time consuming... days and weeks

Sector Expensive to Run...

Energy inefficient... <5%

Advances in freeze-drying technology are required to meet the growing demand for high-capacity ad efficient freeze-dryers.

Lyophilizer: A Closer Look

Lab-scale Lyostar/SP Scientific

• Duct length, diameter

Condensation Rate:

CIP/SIP

Isolation valve

Sublimation Rate:

Radiation

Convection

•Suspended vs on-shelf

Vapor Removal Rate:

Intrabatch position

 Contact conduction Gas Conduction

heat transfer

- Coil/plate topology
- Coil/plate temperature
- Non-condensable pump

Equipment Limit

ENGINEERING

S. Nail, J. Searles, "Elements of QbD in Development and Scale-Up of Freeze-Dried Parenterals", *InterPharm*, 2007.

Equipment Capability curve is accurately predicted by CFD
 A CFD case takes just minutes-hour of CPU time

CFD Setup: Lyostar 2 Simulations

Prepared by Gayathri Shivkumar & Vaibhav Kshirsagar

+ + + +

Boundary conditions

Experimental Validation of CFD

Parameters	Conditions
 Test method 	Ice sublimation using deionized water in 'bottomless trays'
 Test conditions 	Chamber pressure and shelf temperature set to achieve maximum sublimation rate
 Shelf temperature measurement 	Thermocouple
 Condenser pressure measurement 	Capacitance manometer in foreline connecting condenser chamber and vacuum pump
 Chamber pressure measurement 	Capacitance manometer mounted on product chamber
 Mass flow rate measurement 	Tunable Diode Laser Absorption Spectroscopy (TDLAS)

CFD Simulation Settings

Parameters	Star CCM Conditions	Fluent Conditions	
✤ Space	3D	3D	
✤ Time	Steady	Steady	
Density	Ideal gas	Ideal gas	
✤ Flow	Laminar	Laminar	
P-V Coupling	Segregated (SIMPLE scheme)	SIMPLE	
 Spatial discretization scheme (Convection / Pressure & Velocity) 	2 nd order	2 nd order	

Grid Convergence

Simulation Parameters

Property	StarCCM Simulations	Fluent Simulations
Number of cells	275,967	480,372
Relaxation factors	Pressure = 0.3 Velocity = 0.7 Energy = 0.9	Pressure = 0.3 Density = 1 Momentum = 0.7 Energy = 1
Pressure-velocity coupling	SIMPLE	SIMPLE
Number of iterations	3,500	3,500
Residuals	Continuity ~ 10 ⁻¹¹ Momentum ~ 10 ⁻⁷ Energy ~ 10 ⁻⁵	Continuity ~ 10 ⁻⁴ Velocity ~ 10 ⁻⁵ Energy ~ 10 ⁻⁷
Physical parameter (Chamber pressure) convergence	< 0.01 % variation for >1000 iterations	< 0.01 % variation for >1000 iterations
Processor (serial)	Intel Xeon CPU E5- 2670	Intel Xeon CPU E5- 2670
CPU time	2.1 hrs	6.2 hrs

Minimum Controllable Pressure

Mass flow rate, dm/dt (g/hr)	Shelf temperature, Ts (ºC)	Condenser pressure, Pcd (mTorr)	Chamber pressure, Pch (mTorr)			Percentage from exp	e deviation eriments	
Inp	outs for simulat	ions	Experiments	StarCCM	Fluent	Star CCM	Fluent	
			Baxter ca	ases				Low Re
136.8	-22	6	55	58.51	59.64	6.4%	8.4%	
145.44	-20	6	58	61.09	62.27	5.3%	7.4%	(14.5) case
223.2	-12	10	80	82.31	83.95	2.9%	4.9%	
243	-10	11	85	87.54	89.31	3.0%	5.1%	
309.24	-4	10	102	104.58	106.74	2.5%	4.7%	
327.96	-2	10	107	109.40	111.68	2.2%	4.4%	
347.4	0	10	113	114.38	116.77	1.2%	3.3%	
374.4	2	9	120	121.12	123.65	0.9%	3.0%	
392.4	4	9	128	125.74	128.38	-1.8%	0.3%	
439.2	6	5	137	136.96	139.85	0.0%	2.1%	
471.6	8	4	146	144.82	147.90	-0.8%	1.3%	
507.6	10	4	154	153.47	156.74	-0.3%	1.8%	
518.4	14	5.5	156	156.98	160.38	0.6%	2.8%	
536.4	16	3	160	161.57	165.06	1.0%	3.2%	
547.2	18	3	162	164.58	168.13	1.6%	3.8%	
554.4	20	3	164	166.80	170.38	1.7%	3.9%	
558	26	3	166	169.31	172.94	2.0%	4.2%	
			UConn c	ases				
137.88	-23	27	60	62.04	60.97	3.4%	1.6%	
169.56	-18	38	75	73.98	75.08	-1.4%	0.1%	
282.24	-7	40	100	100.58	100.66	0.6%	0.7%	
378	8	53	125	127.20	126.31	1.8%	1.0%	
453.6	13	59	150	145.68	149.91	-2.9%	-0.1%	High Re
676.8	30	67	200	199.17	203.17	-0.4%	1.6%	
-	•	-						(71.6) Case

* Patel, Chaudhuri, & Pikal, Chemical Engineering Science, 2010

Minimum Controllable Pressure

CFD Solvers: Pressure

Re = 14.5, P_{ch} (exp) = 55 mTorr

CFD Solvers: Velocity

Re = 14.5, P_{ch} (exp) = 55 mTorr

Effect of Shelf Gap

CFD: Equipment Differences

Min $P_{ch} = 287 \text{ mTorr}$

What are some industrial applications of CFD?

Aerospace Automotive Chemical Home Appliances Marine / Naval Offshore Building / Architecture Bio-engineering Medicine Turbomachinery

CFD workflow

Workflow – available CAD

2 CAD parts:

- Channel (wall thickness),
- Obstacle (full solid).

Workflow – fluid dynamics definition

Channel with an obstacle: wall at prescribed temperature.

- Analysis of fluid motion,
- Analysis of temperature field.

Workflow – identification of fluid part

The channel volume is rebuilt by selecting the internal faces of the "wall", plus adding inlet and outlet sections.

Wall thickness is not relevant and will be "lost".

Workflow – extraction of fluid part

Boolean operation:

• Subtraction between solid bodies.

Workflow – definition of fluid domain

Domain where the actual calculation will take place.

• CAD suitable for CFD.

Workflow – boundary conditions

- Inlet condition,
- Wall + Temperature condition,
- Outlet condition.

Workflow – surface mesh generation

The surface mesh represents the boundary of the fluid domain and its discretization influences the discretization of the volume mesh.

Workflow – volume mesh generation

The volume mesh represents the object of the CFD calculation.

Workflow – data analysis

- Temperature field: scalar T = T(x,z) at y = constant.
- Flow-field: flow direction shown with arrows.

Workflow – summary

Geometry preparation

Volume extraction

Boundary conditions

• Data are applied at inflow and outflow, e.g. mass flow, pressure, temperature.

Meshing strategy

- Grid independent solutions are ideal
- Characteristic cell sizes are dependent on time available, accuracy needed

Modeling

- Flow type: laminar or turbulent
- Heat exchange on or off

Data analysis

Behind the software

Any CFD software solves the governing equations of fluid dynamics.

They need to be discretized:

• The approximation of a continuously-varying quantity in terms of values at a finite number of points is called **discretization.**

These are the fundamental elements of all CFD simulations:

Flow field is discretized	Field variables (<i>r, u,v,w, P,</i>) are approximated by their values at a finite number of nodes or faces.	
Equations of motion are discretized	Approximated in terms of values at nodes or faces.	control-volume or differential equations (<i>continuous</i>)
System of algebraic equations is solved	Cell gradients are monitored as system of equations is solved iteratively.	algebraic equations (<i>discrete</i>)

The basic equations will be discussed in the next section.

Look and feel of the CFD software STAR-CCM+

File Edit Mesh Solution Tools Window Help		- D X
1 🗠 🖶 🖳 🐘 🗋 <> ► ► ► ● 📗 🔤 代 🖾 🗁 🖉 🌐 💌		
Image: Second procession Image: Figure Second procession	Graphics Display Area	
e- Cerived Parts	1.0++01	2.1 e+02 4.1 e+02 6.0 e+02 8.0 e+02 Vorticity: Magnitude (/s)
Gradients - Properties ×	I.0++01	2.14+02 4.14+02 6.04+02 8.04+02 Vorticity: Magnitude (/s)
Gradients - Properties × Properties	Output × F1 k007 0 633 × Lift Report ×	2.14+02 4.14+02 6.04+02 8.04+02 Vorticity: Magnitude (/s)
	Image: Control of the second	2.14+02 Vorticity: Magnitude (/s)
Derived Parts Gradients - Properties × Properties Gradient Method Hybrid Gauss-LSQ Limiter Method Venkatakrishnan	Image: Control of the second	2.14+02 Vorticity: Magnitude (/s)
Derived Parts Gradients - Properties × Properties Gradient Method Hybrid Gauss-LSQ Limiter Method Venkatakrishnan Custom Accuracy Level Selector 2.0	Output × F1_k007_0.633 × Lift Report × monoccque 7.807498e+00 2.016970e-01 8.0091 struts 1.100428e+01 3.632662e-02 1.1040 surround inner_wheel if -1.853713e-01 -3.175051e-04 -1.8568	214+02 Vorticity: Magnitude (/s)
Berived Parts Gradients - Properties × Properties Gradient Method Hybrid Gauss-LSQ Limiter Method Venkatakrishnan Custom Accuracy Level Selector 2.0 Verbose Ptroperties	Output × F1_k007_0.633 × Lift Report × monoccque 7.807498e+00 2.016970e-01 8.0091 struts 1.100428e+01 3.632662e-02 1.100428e+01 surround inner_wheel if -1.853713e-01 surround inner_wheel if (inner_wheel/surround) -6.301578e+00 0.000	214402 Vorticity: Magnitude (/s) 5.04402 5.044002 5.04402 5.044002 5.044002 5.04400000 5.04400000000000000000000000
Berived Parts Gradients - Properties × Properties Gradient Method Hybrid Gauss-LSQ Limiter Method Venkatakrishnan Custom Accuracy Level Sele tor 2.0 Verbose Expert	Output × F1_k007_0.633 × Lift Report × monccoque 7.807498e+00 2.016970e-01 8.0091 struts 1.100428e+01 3.632662e-02 1.100428e+01 3.632662e-02 1.100428e+01 3.632662e-02 1.100428e+01 3.632662e-02 1.100428e+01 3.632662e-02 1.100428e+01 3.632662e-02 surround inner_wheel if 1.10578e+00 0.000 symmetry -1.356801e-13 0.000000e+00 0.1356801e-13	214402 Vorticity: Magnitude (/s) 5.04402 5.04402
Derived Parts Gradients - Properties × Properties Gradient Method Hybrid Gauss-L5Q Limiter Method Venkatakrishnan Custom Accuracy Level Sele Toperties Expert Least-Squares Quality Criterion	Output × F1_k007_0.633 × Lift Report × monocoque 7.807498e+00 2.016970e-01 8.0091 struts 1.100428e+01 3.632662e-02 1.1040 surround inner_wheel if -1.853713e-01 -3.175051e-04 -1.8568 surround inner_wheel if [inner_wheel/surround] -6.301578e+00 0.000 symmetry -1.356801e-13 0.000000e+00 -1.3568 tire 8.976475e+01 1.153359e+00 9.0918	214402 Vorticity: Magnitude (/s) 5.04402 5.044
	<pre></pre>	214+02 Vorticity: Magnitude (/s)
	<pre></pre>	214402 Vorticity: Magnitude (/s) 5.04402 5.044
Derived Parts Gradients - Properties × Properties Gradient Method Hybrid Gauss-LSQ Limiter Method Venkatakrishnan Custom Accuracy Level Selector 2.0 Verbose Expert Least-Squares Quality Criterion Flat Cells Curvature Criterion Cell Skewness Criterion Gradients	Output × F1_k007_0.633 × Lift Report × monoccque 7.807498e+00 2.016970e-01 8.0091 struts 1.100428e+01 3.632662e-02 1.1040 surround inner_wheel if -1.853713e-01 -3.175051e-04 -1.85681 surround inner_wheel if -1.356801e-13 0.00000e+00 -1.35681 tire 8.976475e+01 1.153359e+00 9.09181 trailing_end -2.802036e-15 4.567586e-03 4.56751 Totals: 2.655969e+01 1.161862e+00 2.77211	214402 Vorticity: Magnitude (/s) 5.04402 5.044
	Output × F1_k007_0.633 × Lift Report × monccoque rtuts 1.00428+01 3.632662e-02 1.100428+01 3.632662e-02 1.100428+01 3.632662e-02 1.1040 surround inner_wheel if -1.856801e-13 0.000000e+00 symmetry -1.356801e-13 0.000000e+00 stree 8.976475e+01 1.153359e+00 9 Totals: 2.655969e+01 1.161862e+00 2.77211	214402 Vorticity: Magnitude (/s)
	Output × F1_k007_0.633 × Lift Report × monoccoque 7.807498e+00 2.016970e-01 8.0091 struts 1.100428e+01 3.632662e-02 1.1040 surround inner_wheel if -1.853713e-01 -3.175051e-04 -1.8568 surround inner_wheel if [inner_wheel/surround] -6.301578e+00 0.000 symmetry -1.356801e-13 0.000000e+00 -1.3568 tire 8.976475e+01 1.153359e+00 9.0918 trailing_end -2.802036e-15 4.567586e-03 4.5675 Totals: 2.655969e+01 1.161862e+00 2.77213 Monitor value: 27.721556838726997	214402 Vorticity: Magnitude (/s)

Section 2: Basic Equations

$$\frac{\partial}{\partial t} \iiint_{V} \rho \phi dV + \iint_{S} \rho \phi \vec{u} \vec{dS} = \iint_{S} \Gamma_{\phi} \vec{\nabla} \phi \vec{dS} + \iiint_{V} S_{\phi} dV$$

Governing equations of fluid dynamics

The following equations are the basis of CFD:

Conservation of Mass

Continuity

Conservation of Momentum

Conservation of Energy

1st law of thermodynamics

These equations take the form of non-linear differential equations with partial derivatives.

Basic equations

Flows of X over the boundaries of a control volume

If necessary a source term has to be taken into account: \dot{X} (of course never in the mass balance)

$$= \iiint_V S_{\phi} dV$$

How are these equations used?

Equations have to be solved for every single cell within the control domain

Section 3: Boundary Conditions

The boundary conditions represent in a mathematical way how the calculation domain interacts with the rest of the universe

SIFMENS

Boundary types: internal flow

outflow

boundary types in STAR-CCM+: velocity inlet, mass flow inlet, stagnation inlet

boundary types in STAR-CCM+: pressure outlet, flow split outlet

Boundary types: external flow

Conditions of wall boundary type

additional specification when thermal exchange is taken into account:

adiabatic

q=0

predefined heat flux predefined temperature

 \dot{q} =constant \dot{q} =- $\lambda \frac{\partial T}{\partial x}$

predefined heat transfer coefficient

$$\dot{q} = \alpha \left(T_{wall} - T_{fluid} \right)$$

Boundary type wall - example

immobile wall

Inlet: u = 10, v = 0, w = 0Wall: u = 0, v = 0, w = 0 moving wall

Inlet: u = 10, v = 0, w = 0Wall: u = -10, v = 0, w = 0

Conditions of inlet boundary types

SIEMENS

velocity inlet, mass flow inlet, stagnation inlet

boundary conditions to be specified:

turbulence specification

Reynolds Averaged, Detached Eddy Simulation, Large Eddy Simulation

physical values		velocity inlet	mass flow inlet	stagnation inlet
	velocity	Х		
	mass flow rate		Х	
	temperature	Х	Х	Х
	pressure			Х

Boundary type velocity inlet – example

$$(u,v,w)_{in} = (u,0,0)$$

 $(u,v,w)_{in} = (u,0,w)$

Boundary type velocity inlet – example

inlet flow direction specification: normal to boundary

Conditions of outlet boundary types

flow split outlet, pressure outlet

	pressure outlet	flow split outlet
value to be specified	pressure in outlet area	percentage of flow in the considered outlet in relation to the total outflow
application	fluid leaving a domain through one or several outlets into a surrounding with known pressure	hydraulic systems with multiple outlets whose flow rates are known
backflow through individual faces of the outlet area	permitted	not permitted

Boundary type outlet – example

Outlet boundary type "pressure outlet"

specification: pressure 1 = pressure 2 Outlet boundary type "flow split outlet"

specification, for example:

flow split 1 = 80%, flow split 2 = 20%

Outlet boundary – backward facing step

Importance of choosing the right location

© 2018 Siemens Product Lifecycle Management Software Inc.

SIEMENS

Symmetry boundary condition

Symmetry boundary can be applied if,

- the determined geometry is symmetric to a plane,
- the velocity field can be assumed to be symmetric to the plane.

Advantages:

- · less computational time required,
- less disk space required,
- results can be post-processed in the whole region (on both sides of the symmetry plane).

Section 4: Flow Physics

- 2D or 3D ?
- steady-state or transient ?
- compressible or incompressible fluid ?
- fluid, porous, or solid ?
- influence of temperature (free convection) ?
- stationary or rotating ?
- single-phase or multiphase ?

Several different physical models exist Choose the most suitable ones for your application

2D or 3D? incompressible or compressible?

3D flow: variation in quantities in all three directions

2D flow: variation in one direction can be ignored (under certain conditions)

- Solution only in the two other directions
- Reduction of computation time

incompressible fluid: constant density compressible fluid: density varies

- Fluid can be treated as an ideal gas
- Density is only function of temperature

 $\rho = constant$

$$\rho = p/(RT)$$

ho=f(T) (e.g. polynomial function)

Steady-state or transient?

velocity field in a cyclone

can be considered as steady-state to study major effects

Video: ship movement in waves

Fluid, porous, or solid?

Multi-region modeling

Neighboring domains

- gas
- liquid
- solid

Subdomains

- contain fluid cells with specific resistance (porosity)
- contain fluid cells with spin

SIEMENS

Example of multi-domain calculation

SIEMENS

3 domains: fluid1 + solid + fluid2

Example of multi-domain calculation

2 domains: fluid + solid

Conjugate heat transfer:

- fluid movement and enthalpy transport in fluid phase
- · heat transport by conduction in solid phase
- heat exchange between both phases

Examples of applications

- food industry
- chemical processing industry
- power generation
- automotive powertrain
- building and in-vehicle climate studies

Examples of heat transfer processes

- single phase heat exchange
- condensation
- boiling, evaporation

SIEMENS

When to use rotational regions?

Examples of application:

- Turbomachinery
 - Torque converters
 - Fans
- Mixers
- Axial flow centrifugal pumps

Single phase or multiphase?

Lagrangian

- Fluid Solid
- Fluid Fluid (liquid liquid, gas liquid)
 Eulerian
- Volume of Fluid

Multi-component

Video

Section 5: Meshes for CFD

- Meshing workflow
- Parameters and quality of surface meshes
- Parameters and quality of volume meshes
- Types of volume meshes

Control domain

Extraction of fluid domain

The extraction of the fluid from the solid CAD model can be done in several ways:

- External CAD software
- Internal CAD tool in the CFD software (e.g. 3D-CAD modeler)
- Simple operations in the CFD software
- Surface Wrapper

Basic components and terminology

mesh

(volume mesh)

mesh calculation mesh defining the computational domain cell basic unit of the calculation mesh collection of all cells = volume mesh face face of a cell collection of all external faces = surface mesh edge side of a face node vertex / node of the mesh

Structured / unstructured meshes

structured meshes

 cells can be identified by a matrix with indexes i,j (2-dimensional) or indexes i,j,k (3-dimensional)

block-structured meshes

mesh is block-wise structured

unstructured meshes

• irregular mesh structure

Types of unstructured meshes

Example: volume mesh around a ship

Wall prism layers

Section 7: Data Analysis

© 2018 Siemens Product Lifecycle Management Software Inc. Page 64 CT09105_CM13_1

Introduction

The solver returns a vast amount of that need to be transformed into a form a human mind can quickly assess.

This is called Data Analysis, commonly also referred to as "Post-Processing".

- Data Analysis can be prepared <u>before</u> or <u>after</u> a CFD solution is obtained.
- Preparing the Data Analysis before the start of the computation offers the advantage of watching the solution develop.

A visual representation of the flow field is the most common interpretation of the data, but graphs are also important tools.

STAR-CCM+ contains a full suite of powerful Data Analysis tools:

- 3D flow visualization,
- Animation,
- Graphing of data,
- User defined calculations.

Analysis of CFD data

Scalars: color legend variants

SIEMENS

Iso-surfaces

Vectors

SIEMENS

Scalars + Vectors

Streamlines

