OBJECTIVES

- Students will compare three different types of bandages based on absorption, adhesion, and tensile strength properties
- Students will gain experience using equipment for material science testing

INTRODUCTION

A bandage is defined as a strip of fabric used especially to cover, dress, and bind up wounds. In ancient times, bandages were mainly made out of plant materials, which were sometimes combined with animal hides. Like bandages today, bandages were used in ancient times as a first aid material to bind and dress wounds. One of the first documented applications of bandaging was used by ancient Egyptians.¹

Today, the most common type of bandage used is known as an adhesive bandage. An adhesive bandage is a small bandage used for non-serious injuries. What separates an adhesive bandage from a normal bandage, as indicated by its name, is that one side is coated with an adhesive material. This allows for the bandage to stick to the skin much better than using gauze bandages. These bandages also have a non-adhesive absorbent pad attached to the adhesive side, which helps absorb fluid that might be excreted from the wound. In some cases, this pad will be medicated with some sort of antiseptic solution.

One of the most common brands of this kind of bandage is the Band-Aid® brand. In 2001, Band-Aid® marked the production of its 100 billionth bandage.² However; there are still many other brands that compete against this company, including several generic brands. In this lab, the teams will be comparing two generic brands of bandages to a Band-Aid® brand bandage. They will be conducting this comparison based on three characteristics; adhesion, tensile strength, and absorbency.

MATERIALS NEEDED

- Band-Aid® brand bandage
- Generic brand bandage #1
- Generic brand bandage #2
- Porcine Skin cut into a 21 x 68 mm strip (prepared by instructor)
- Force Test System
- Force Gauge (capable of reading up to roughly 10 N)
- Flash drive (for data)
- Scissors
- Length-measuring device (ruler, caliper, etc.)
- Tweezers
- Bench Scale (accurate up to 1/1,000 g)
- Weighing Paper
- 100 mL beaker filled with DI water
- Viscous Solution (42% glycerol by volume)

SAFETY CONSIDERATIONS

Laboratory goggles should be worn at all times in the lab. Gloves should also be worn when handling porcine skin and the bandages, as oil from hands can interfere with experimentation. Be careful when carrying and using scissors.

PROCEDURE

PART 1 – Preparation for Data Collection

1. Obtain 12 types of bandages for each of the brands, so that you have a total of 36 bandages.
2. For each type of bandage, cut ten bandages so that the only piece left is the absorbent pad.
3. For the other two bandages, cut into rectangular pieces. They don’t have to be all the same dimensions, but make sure that there is an equal amount of adhesive material on either side of the absorbent pad for each bandage.
4. After cutting, record the length and width of each bandage.
5. The following parts require that using these cut bandages as so: Part 2 – Adsorption Testing requires the bandages cut in step 2 of this procedure; Part 3 – Adhesion Testing requires the bandages cut in step 3 of this process; Part 4 – Tensile Testing also requires the bandages prepared in step 3, so label each of bandages cut in step 3 what test they will be used for, along with the measurements that you took in step 4.
NOTE: The Parts following Part 1 do not have to be completed in the exact order listed. Your professor or instructor will give you more details about the process for obtaining all the data needed for this lab.

PART 2 – Absorption Testing

For this part of experimentation, you will need the weighing paper, bench scale, beaker of water, the beaker of viscous fluid, and tweezers.

1. Measure the length and width of the absorbent pad.
2. Make sure your bench scale is turned on. Place the weighing paper on the bench scale, and tare the instrument. Do not remove the weighing paper from the bench scale.
3. Using the tweezers, place the absorbent pad on top of the weighing paper. Measure the initial mass of the absorbent pad.
4. Now, using the tweezers, place the absorbent pad in the beaker full of water. Let the bandage soak in the water for 1 minute.
5. After the minute is up, use the tweezers to pick up the absorbent pad. Lightly tap the tweezers on the side of the beaker to remove as much excess water as possible.
6. Place the bandage back on the bench scale and take a final mass reading.
7. Repeat steps 3 to 6 so that you have 5 data points for each bandage.
8. Now, repeat steps 3 to 6 but instead of using water, use the viscous fluid. This viscous fluid is roughly the viscosity of human blood. You will use up the other five bandages of each brand.

Figure 1. The proper shape of the adhesion bandages after preparation for the adhesion testing and tensile testing procedures of this experiment.

Figure 2. The proper shape of the adhesion bandages after preparation for the absorption procedure of this experiment.
PART 3 – Adhesion Testing

For this part of experimentation, you will need to use the force test system. A professor or instructor will walk you through the following procedure.

1. Fasten the porcine skin to the force test system.
2. Adhere the selected bandage to the porcine skin so one piece of adhesive side is connected to the porcine skin, while the other is attached to the force test system. The setup should look similar to the figures below:

![Figure 3. Side view of the proper setup for adhesion testing.](image)

![Figure 4. Forward view of the proper setup for adhesion testing.](image)

3. Tare the instrument by setting the home point, then set the system so it will move upward at a rate of 20 mm/min.
4. Now, make sure that the machine is going to collect your data. You may also want to have the instrument give you a graph of the data being collected if possible.
5. Once the force test system is set up, start data collection. Data collection should end once the bandage is completely unattached from the porcine skin. Make sure that you save your data on a flash drive.
6. Repeat this process for the other two bandages. Give your data files specific names so you know which file corresponds to which brand.
PART 4 – Tensile Strength Testing

1. Set up the force test system so that you can take tensile test measurements.
2. Place the bandage into the force test system. Your setup should look be checked by the instructor before starting testing.
3. Tare the instrument by setting the home point, then set the system so it will move upward at a rate of 20 mm/min.
4. Make sure that the machine is going to collect your data. You may also want to have the instrument give you a graph of the data being collected if possible.
5. Once the force test system is set up, start data collection. Data collection should end once the bandage has completely ripped. Make sure that you save your data on a flash drive.
6. Repeat this process for the other two bandages. Give your data files specific names so you know which file corresponds to which brand.

RESULTS

Make sure that all data files are given to each member of the team. Also, make sure that all results that needed to be written in your lab notebook were recorded.

DATA ANALYSIS

Once you have collected your data, you will need to normalize your data. For Part 2 of this experiment, you will need to know the amount of water that was absorbed by the

Figure 5. Tensile testing of an adhesive bandage. Make sure that the tensile testing setup is correct before starting data collection.
absorption pad. To do this, you need to know the mass of water absorbed and the density of water. Use the following equation for this calculation:

\[\text{volume of water absorbed (mL)} = \frac{\text{final mass (g)} - \text{initial mass (g)}}{1.0 \frac{g}{mL}} \]

(1)

Use the last calculation given on all the trials of your absorption data. You will also need to know the amount of water absorbed per area of the absorption pad. For each of the bandages, use the following equation:

\[\text{Absorption of bandage} = \frac{\text{volume of water absorbed (mL)}}{\text{area of absorption pad (in²)}} \]

(2)

For Part 3 of this experiment, you need to normalize the length of the bandage that was peeled off. To do this, you must divide each length measurement in the set of data by the total length of bandage that was peeled off the porcine skin. To do this, use the following for each point:

\[\text{Normalized length} = \frac{\text{length peeled at current data point (mm)}}{\text{length peeled at final data point (mm)}} \]

(3)

For Part 4 of this experiment, you need to normalize both the force readings and the length measurements. For force readings to be normalized, these force measurements are used to calculate stress readings. A stress reading is the force exerted on the system divided by the area, shown below:

\[\text{Stress} = \frac{\text{force exerted at the data point (N)}}{\text{area of the bandage initially (cm²)}} \]

(4)

For length measurements to be normalized, the length readings are used to calculate strain readings. A strain reading is the difference in length (the initial length subtracted from the new length) divided by the initial length. The equation is shown below:

\[\text{Strain} = \frac{\text{length pulled at current data point (cm)}}{\text{initial length of the bandage (cm)}} \]

(5)

Make sure that this is done for each data point for each bandage used in this section of the procedure.
QUESTIONS

1. Compare the absorbance of each bandage brand. Be sure to state which bandage brand had the maximum absorption rate and which had the minimum. Please provide the averages of the following measurements made: area, initial weight, final weight, water absorbed, and absorption rate.

2. With the adhesion testing data you collected, create graphs of Normalized Length versus Force (N) for each of the brands (this means that Normalized Length will be on the x-axis and Force will be on the y-axis). Can you see any trends in the data (i.e. a certain length where the force reaches a maximum, general shape of the data, etc.)? Be sure to submit the graphs along with your answer.

3. With the tensile testing data you collected, create graphs of Strain versus Stress (N/cm²). Can you see any trends in the data? Be sure to submit the graphs along with your answer.

4. Of the three brands that you conducted experiments on today, which brand do you think is best to use? Use the graphs you just made along with your absorption comparison to justify your answer.

5. Based on your results, do you think that the viscosity of the solution affected the absorption rate of the bandages? Why or why not?

6. Do you think there were sources of error for this experiment? If so, state the specific source of error, and which part of the procedure you would find this error. If not, why is there a lack of error for this experiment?

7. What is one thing you could do that would improve the accuracy of this experiment?

REFERENCES
