Integration of Particle/Powder Technology in the ChE Curriculum Demonstrations and Teaching Modules

ASEE Chemical Engineering Division

Summer School

July 21-27, 2012 University of Maine Orono, ME

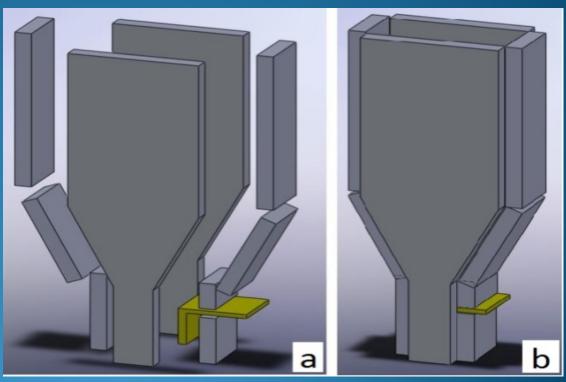
Zenaida Otero Gephardt gephardtzo@rowan.edu 856-256-5314

Integration of Particle/Powder Technology Demonstrations and Teaching Modules

 Introduce and familiarize students with technology and industrial applications - Focus: Pharmaceutical industry

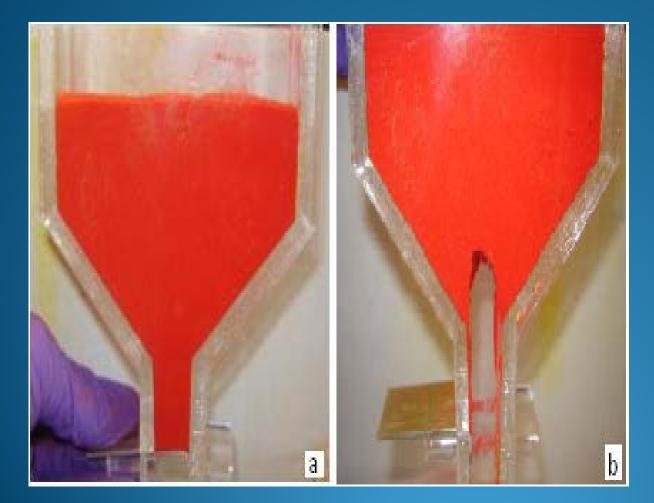
Measurements and Analysis

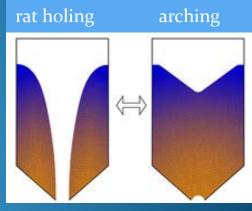
- Conductivity measurements
- Colorimetric measurements
- Experimental design
- Engineering statistics (I err therefore I am. St. Augustine)


 Study of unfamiliar technology opens minds to new analysis techniques

Agenda

- Hopper flow (video 1)
- Rise of large particles in bed of smaller particles
- Particle mixing/segregation
- Pneumatic conveying
- Video 2
- V-mixing
 - Concept
 - *V*-mixer design and construction (detailed instructions in pdf file provided)
 - Experimental design and group experiment
- Group Formation: pick number and join group
- References in Excel[®] file provided
- Additional information and tabular design format(Excel[®] ready) also provided


Hopper Flow


- 2-D hopper
 - ¼ in. clear polycarbonate, acrylic
 - brass hopper (18 gauge) "flow controller"
 - Angle: 40° and 60°
 - Acrylic bonding adhesive
- H = 7.75", Max. width of 5"

Hopper: (a) Un-assembled (b) Fully assembled

Hopper Flow

Hopper Flow Factors

$$ff = \frac{\sigma_C}{\sigma_D}$$

 σ_{c} = hopper compacting stress σ_{D} = stress developed in powder σ_{v} = f(σ_{c}) unconfined yield stress of powder (arch surface)

Probability of arching decreases with flow factor

 $\sigma_{\rm D} > \sigma_{\rm y}$ for flow

$$\frac{\sigma_{\rm C}}{ff} > \sigma_{\rm y}$$

Arching function of material, temperature, moisture, corrosion and abrasion

Hopper Flow

<u>http://www.jenike.com/Solutions/poorflow.html</u>

Particle Mixing/Segregation

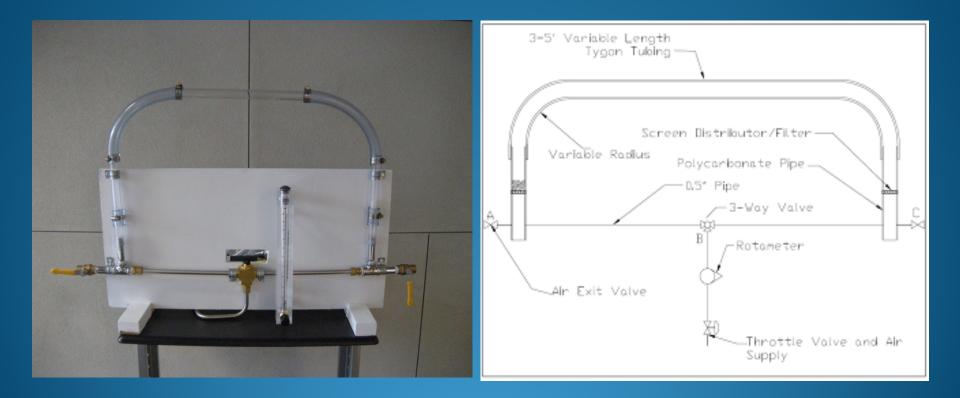
- Clear plastic
- Hand-crank or motor

1	tumbler; $d_{inner} = 5.75^{"}$, length = 12"
2	gaskets d _{inner} = 6"
6	2" long 3/8" bolts
6	3/8" hex nuts
1	wooden base with tumbler supports

Particle Segregation

Particles forced toward wall. Larger particles travel further and smaller particles "fill" spaces among larger particles

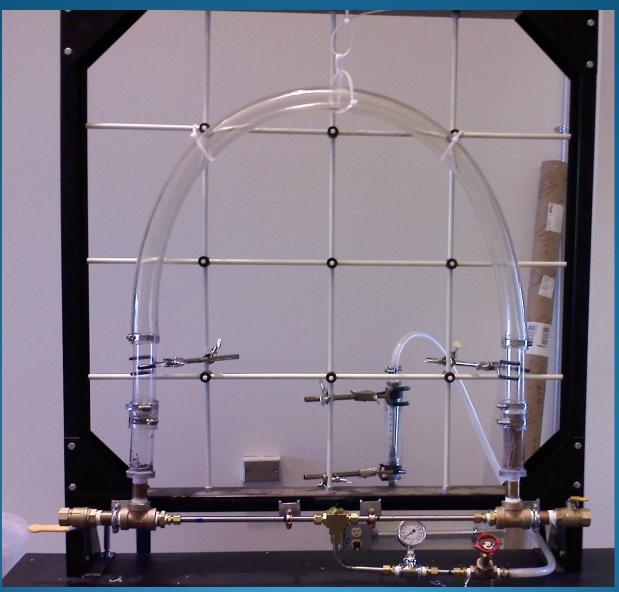
Can connect to trajectory seg./percolation


Stoke's Law distance, D

$$D = U \rho_p x^2$$

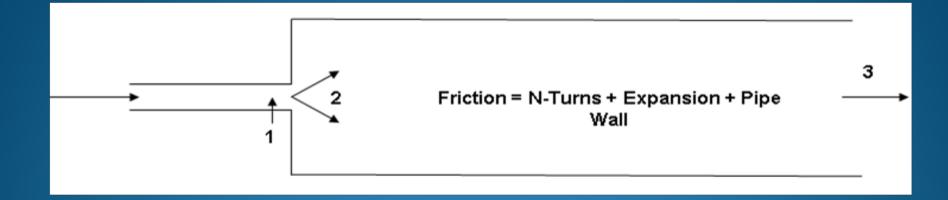
18μ

U = velocity ρ_p = particle density x = particle diameter μ = fluid viscosity


Pneumatic Transport Apparatus (small)

Pneumatic Transport Apparatus Parts List (small)

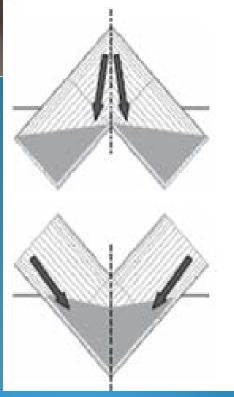
Part Inventory - Pneumatic Transport Apparatus - SMALL						
ITEM	QTY.	Specification	Purpose/Description			
1	6'	1" ID	Tygon Tubing - Thick walled			
2	2'	1" OD	Polycarbonate Round tube Clear			
3	2	1/2"	Threaded			
4	4	1/2" X 3"	Threaded Nipples			
5	1	0 - 40 SCFM	Flow meter			
6	1	1/2"	Brass Ball Valve			
7	6'	1/2" ID	Braided Hose Air Feed			
			Diverting 3 Port brass ball valve Yor Lock Fittings,			
8	1	1/2" Tube	Ultra High Pressure			
9	5	1/2"	Brass Compression Fitting Adapter for 1/2" Tube			
10	1	1/2"	Bronze Globe Valve 1" NPT Female Connections			

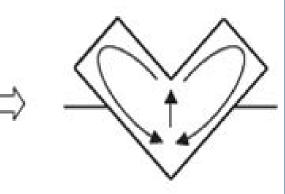

Pneumatic Transport Apparatus (large) – Ear Protection Required

Pneumatic Transport Apparatus Parts List (large)

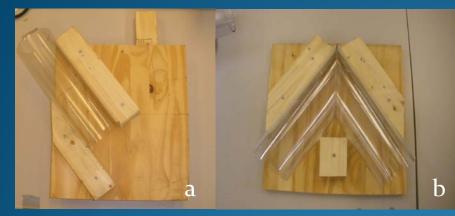
Part Inv	Part Inventory For Pneumatic Transport Apparatus - LARGE								
ITEM	QTY.	SPECIFATION	DESCRIPTION						
1	6 ft	2" ID - 2.5" OD	Tygon PVC Tubing (0.25" wall)						
2	2 ft	1.75" OD 1.5" ID	Poly-Carbonate Round Tube (clear - 0.125" wall)						
3	2	1.0" NPT	Brass Ball Valve - Female Connections						
4	2	1.0"	Medium-Pressure Cast Brass Threaded Pipe Fitting, TEE						
5	2	1" Male X 1/2" Female	Medium-Pressure Cast Brass Threaded Pipe Fitting, Hex Bushing						
6	400	0.125" DIA.	Nylon Spheres						
7	4	0.5" NPTF	Std. Brass Compression Tube Fitting Adapter Male Pipe						
8	1	0.5" TUBE OD	Brass Ball Valve w/ YOR-LOK Fittings Diverting 3-port Ultra High Pressure						
9	6" X 6"	0.125" spacing	Std. Screen/Mesh Air Distributor						
10	1	1/2" class 150	Bronze Globe Valve 1" NPT Female - Throttling Valve						
11	N/A	0.5" TUBE OD	Unspecified length TO BE DETERMINED						
12	4	1"	Thick-wall Brass Threaded Pipe Nipple, Sch 80,11/16" Thread Length						
13	1	10-60 SCFM @ STP	Rotameter/Flowmeter						

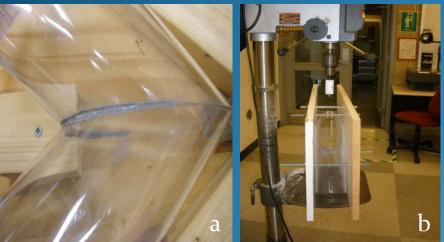
Pneumatic Transport Energy Balance/Continuity


$$v_{2} = \left[\frac{\frac{(P_{1} - P_{2})(2 RT)}{MW_{AIR}}}{\left[\left(\frac{D_{2}^{2}}{D_{1}^{2}}\right)^{2}\left(\frac{P_{2}}{P_{1}}\right)^{2}(P_{1})(K_{EXPANSION} - 1) + P_{2}\right]}\right]^{0.5} = \left[\frac{\left(\frac{kgm}{s^{2}m^{2}}\right)\left(\frac{kgm^{-4}}{s^{2}m^{2}}\frac{Kkmol}{kg}\right)}{\left[\frac{kgm}{s^{2}m^{2}}\right]}\right]^{0.5} = \frac{m}{s}$$


Poor estimations – why? What energy losses are not included in analysis? Can also do minimum fluidization velocity measurements (one side –fluidized bed)

V-Mixing


5 L constant speed V-mixer www.**tabletpress.net** \$1650 – bench top model with timer switch Loading capacity – 1 kg



V-Mixer Construction

(Detailed instructions in pdf file provided)

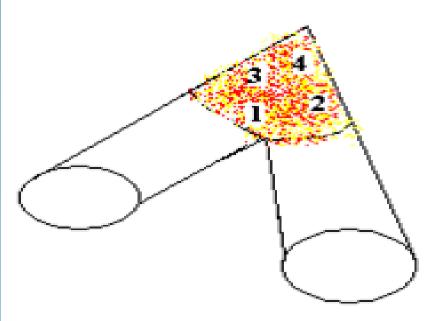
Cutting (a) and gluing tubes (b)

Epoxy (a) and drilling hole (b)

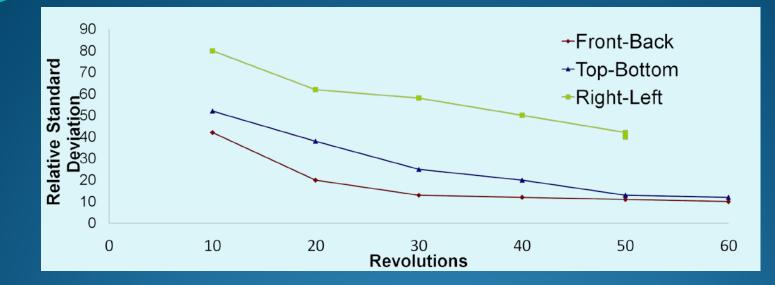
Pneumatic motor Gast Mfg. Corp (Vendor – McMaster-Carr Model #2AM-FCW-13 with Boston gear/speed reducer 713-60-j \$500.00

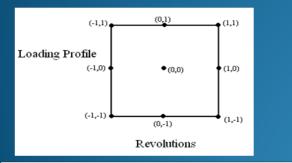
V-mixer Demonstration highly visual and colorful

k-12 – engaging, ask for predictions undergraduates – predictions based on physics, sampling, mixing quality measures, loading procedures

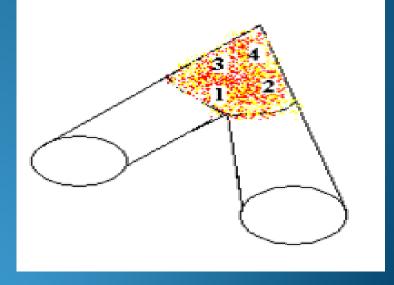


V-Mixing Module

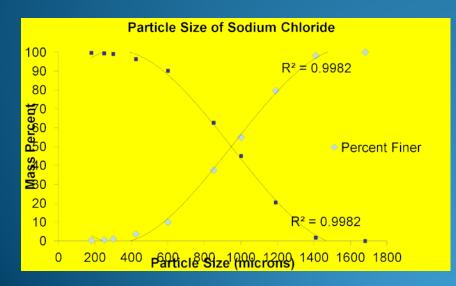

- Introduces students to mixing of solids with pharmaceutical applications
- No constitutive equations
- Introduce students to design of experiments (DOE)
- Students previously exposed to basic statistics and t distribution

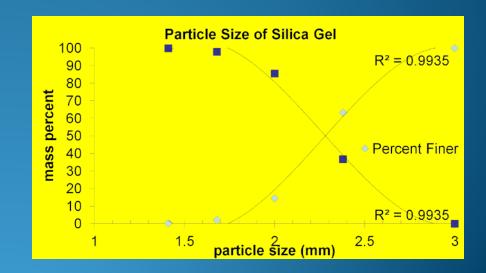

V-Mixer Experiments (colorimetric measurement)

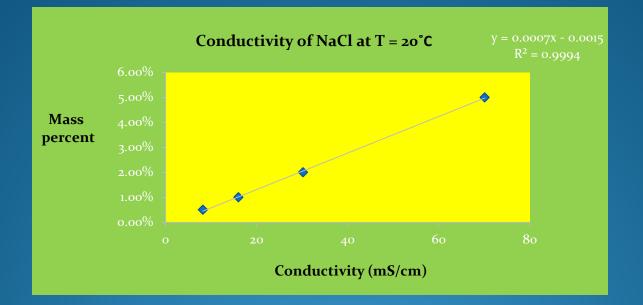
- 90 110 micron polyarmor[®] particles
- Red and yellow particles
- Yellow dye soluble in methanol
- Mix, sample,
 spectrometer measurement
 λ = 570 nm



Spectral Colorimetric Measurements - Mixing Quality

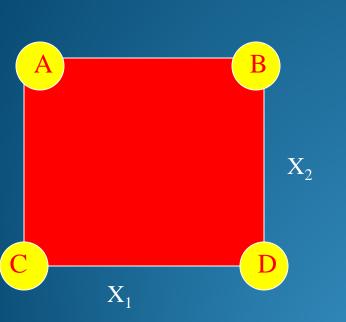



Load	ling Profile	Revol	utions
Coded	Actual	Coded	Actual
1	top-bottom	1	18
0	right-left	0	10.5
-1	front-back	-1	3


Particle Size Distributions

Particle size (shaker method or XCT scan) Sodium chloride : $\Phi_{50} = 950 \ \mu m$ coefficient of uniformity (Φ_{60}/Φ_{10}) = 0.67 Silica gel: $\Phi_{50} = 2.27 \ mm$ coefficient of uniformity (Φ_{60}/Φ_{10}) = 0.82

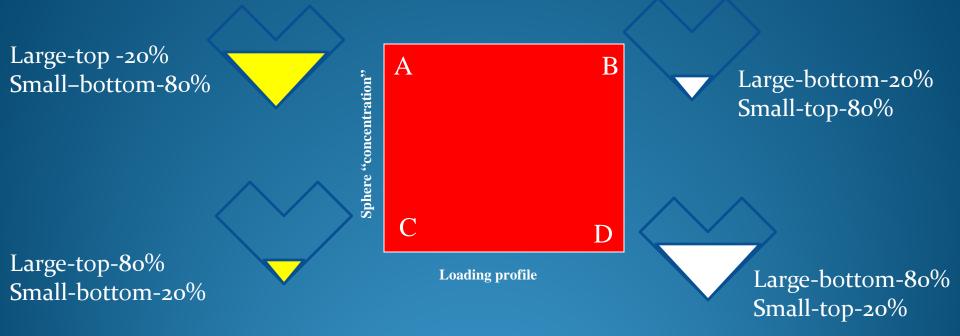
Conductivity of NaCl Solution - Quantifies Concentration Mixing Quality


Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:Particle System	10650.2	1	10650.2	148.15	0.0000
B:Loading Profile	559.77	1	559.77	7.79	0.0107
C:Number of Revolutions	609.329	1	609.329	8.48	0.0081
RESIDUAL	1581.53	22	71.8879		
TOTAL (CORRECTED)	13380.7	25			

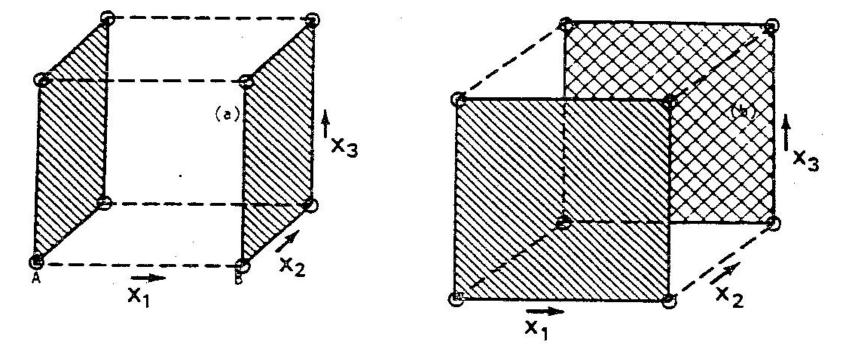
Let's Experiment!

- Four (4) V-mixers
- Load mixers at design points
- Variables: particle (colored spheres) size and loading profile
- Constant: mixing speed, mixing time, V-mixer fill, sphere size ratio
- Very basic experimental design concepts before forming groups

V-Mixer Experiment 2 level factorial for two variables 2² factorial



- 1. Average results at high and low values of x_1 and x_2
- 2. Compute difference between average result at high and low values of x_1 and x_2
- 3. Compare difference to MSFE at desired confidence level
- 4. Do "center point" experiments to test curvature
- 5. Compare "center point" average to MSCE at desired confidence level


Results:

- Identify statistically significant variables
- Develop algebraic model for measured variable as function of independent variables x₁ and x₂ and their interactions

V-Mixer Experiment (not to scale) (measurements – weight %)

Spheres - particle size and location in mixer constant ratio 80/20 constant V-mixer fill large spheres small spheres

Experimental design

•Hidden replication-less experiments

•Orthogonality – independence among variables

Let's form groups

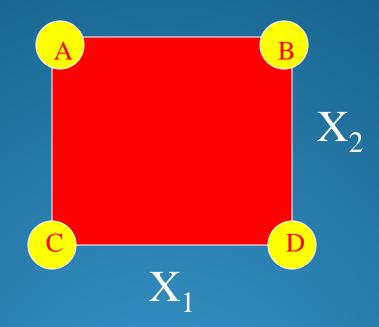
Acknowledgements

- C. Del Vecchio
- K. Ross
- M. Glasspool
- J. Giacomelli
- M. Rodgers
- H. Diallo
- M. Harris, ChE Technician

This work is part of a publication in progress.

Number of Experiments: OFAAT v. Design

- Extraction of herbicide from soil matrix
 - quantification of residue and sample preparation
- Variables: solvent, co-solvent, T, P, soil matrix, operation mode
- OFAAT: 3 variable values, 2 modes of operation N = (3)(3)(3)(3)(2) = 486
- Factorial design: $2(2^5) = 64$
- Design: minimum experimental runs, inclusive and accurate analysis

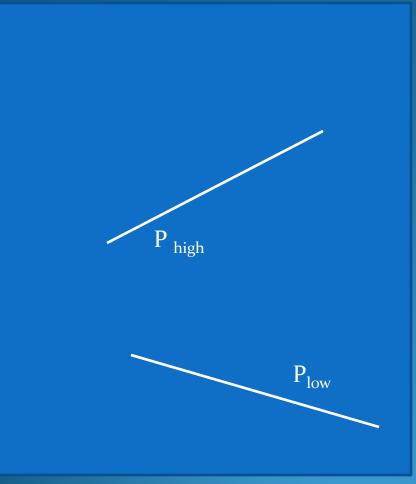

Properties of Factorial Designs

Hidden replication

- all points are used to calculate effect on variables and interactions

• Orthogonal (independent measurements)

Interactions Independent Variables



Interactions Independent Variables

• In = $\frac{1}{2} [(b-a) - (d-c)]$

If more than 2 factors – compare diagonally opposing planes

Interaction Example Solid Solubility in SF CO₂

Solubility = $f(CO_2 \text{ density, solid volatility})$ T \land volatility \land density \checkmark

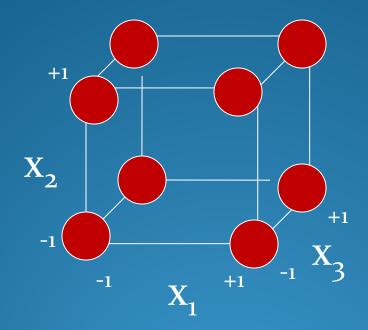
P_{high} - density high

P_{low} - density low

solubility

Temperature

Design: Coding Factors


- Code factors for tabular analysis discrete: + and – continuous: high + low -
- Interpret + and as +1 and -1
- Space widely for larger response

Factors

Trial

	x,	x2	x ,	5 × .	×,
-		1	_ 1	_	
$1 \\ 2 \\ 3 \\ 4 = 2^{2}$	-	-	_	_ 1	_
2	+	+	-		_
$\frac{3}{4} = 2^{2}$	-	Ŧ	_		_
4 = 2-		•	-		_
5	-	-	+		— ·
6	+	-	+	- 1	
7	-	+	+	-	-
5 6 7 8 - 2 ³	+	+	+	-	. —
0				+	-
9 10 11 12 13 14 15 16 = 2 ⁻	+	-	-	+++++++++++++++++++++++++++++++++++++++	-
11	_	+	_	+	· 🕳
12	+	+	-	+	-
13	-	-	+	+	-
14	+	-	+	+	-
15	<u> </u>	+	+	+	-
$16 - 2^{-1}$	+	+	+	+	-
	· .				
$ \begin{array}{r} 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 - 2^{3} \end{array} $	-	-	_	-	+
18	+			-	+
19	-	+	-	—	+
20	+	+	-	-	+
21	-	-	+	-	+
22	+	-	+	-	+
23	_	+	· +	-	+
24	+	+	+	-	+
25		-	<u> </u>	+	+
26	+	-	-	+	+
· 27		+	_	+ + + + + +	+ + + + + + + + + +
28	+	+	-	+	+
29	-	-	+	+	+
30	+	-	+	+ + +	+
31		+	+++	· +	+ +
$32 - 2^{5}$	+	-	+	+	+

2³ Factorial Design

Computational table for a 2³ Factorial Design

Run	mean	X,	X ₂	X ₁ X ₂	x ₃	X ₁ X ₃	x ₂ x ₃	$x_{1}x_{2}x_{3}$	¥
1	+	-	-	+	-	+	+	-	
2	+	+	-	-	-	-	+	+	
3	+	-	+	-	-	+	-	+	
4	+	+	+	+	-	-	-	-	
5	+	-	-	+	+	-	-	+	
6	+	+	-	-	+	+	-	-	
7	+	-	+	-	+	-	+	-	
8	+	+	+	+	+	+	+	+	
Σ+ Σ- D E	D= Σ+ - Σ- E= D/4								

Y = measured variable, compare E to MSFE, average of center measurements compared To MSCE if abs. value of E >MSFE – significant at confidence level . If center average > MSCE – nonlinearities Significant at confidence level

Computational Table for Two-Level Factorial for up to Five Factors (showing main effects and interactions)

2 ²	23	2*		2*
ц н тар н Trial Ц н н н	א א א א א א א א א א א א א א א א א א א	ג'ג' ג'ג'ג' ג'ג'ג'	รัง รัง รัง รัง รัง รัง รัง รัง รัง รัง	, , , , , , , , , , , , , , , , , , ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		+ + + + + - + - + + + +	-++-+++-+++-++-++-+++-+++++++++++++++	+ +
5 + + 6 + + 7 + - + - 8 + + + +	++++	- + + - + + - + - + 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • • • •
$\begin{array}{c} 9 \\ + + \\ 10 \\ + + \\ 11 \\ + - + - \\ 12 \\ + + + + \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- + + - + + - + - + 	-++- + $-++$ $-++-+++$ + $+$ $-++--+-+$ + $-+ -+-+$	+ ++ + +-+-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + + + + + + + + + + + - + - + - + - + - + - + - + - +	+ + + + + _ + _ + + + + +	-++- $-++ -++-+++$ $-+++$ $-++--+-+$ $-+-+$ $-+-+$	+ + +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-++- $-++-++$ $-+++-+-+$ $-+-+$	+ + + + + - + - + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- + + - + + - + - + 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + + + + +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-++-+ $++-++++++-+-+++++++++++++++++$	+ + - + - + 	+ + + + - + + - + - + - + -	+ +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + + - + - + - + - + - + - + -	++ ++ +	+ + + + - + + + - +

Accounting for Curvature

Non-linear effects

Run center points (+1=150 and -1=50 then center point, 0 = 100)

 Severity of curvature quantified by minimum significant curvature effect

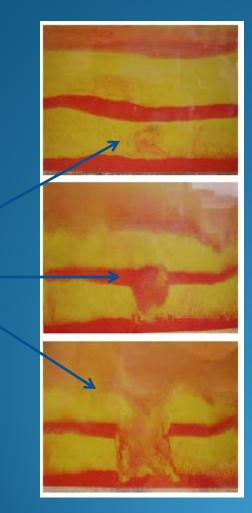
Factor Effect Significance: Minimum Significant Factor Effect

• MSFE = $t \cdot s(2/mk)^{1/2}$

t= student's t at desired confidence level and appropriate degrees of freedom s= standard deviation m = number of + signs in column k= number of replicates

Curvature Effects: Minimum Significant Curvature Effect

• MSCE =
$$t \cdot s \begin{bmatrix} \underline{1} + \underline{1} \\ mk & c \end{bmatrix}^{1/2}$$


all variables as defined and c = number of center points

Coding and Model from Experimental Data

• Code
$$X(coded) = \frac{X - (high + low)/2}{(high - low)/2}$$

X = the value of the independent variable at which a prediction is desired

Large Particle Rise in Smaller Particle Bed

Disk

8	6-32 thread 7/64 hex head screws
2	10" by 10" acrylic plastic sheets
4	10" by 1" acrylic plastic sheets
1	10" by 1" gasket

- 2-D square vessel (10") Sealed
- Flat metal disc d=1"