# **Probability Distribution**

1. In scenario 2, the particle size distribution from the mill is:

|          | Counts |
|----------|--------|
| <10 mm   | 50     |
| 11-20 mm | 125    |
| 21-30 mm | 350    |
| 31-40 mm | 275    |
| 41-50 mm | 250    |
| 51-60 mm | 200    |
| 61-70 mm | 40     |
| 71-80 mm | 10     |
| >81 mm   | 5      |

Use JMP to perform the following:

- (1) Distribution of Counts Vs Size
- (2) % Distribution Vs Size

(3) Mean

(4) Variance

Solution:

| 🖣 JWE    | P          |     |        |     |         |     |             |               |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|----------|------------|-----|--------|-----|---------|-----|-------------|---------------|------|------|----------|------|-----|-------|---------|---|---|---|---|---|---|---|---|
| File Ed  | dit Tables | Row | s Cols | DOE | Analyze | Gra | ph T        | ools \        | /iew | Wind | wob      | Help |     |       |         |   |   |   |   |   |   |   |   |
|          | ) 🚅 🗟      |     | 🗐 X    |     |         | 2   | сь <i>«</i> | 5 <b>.</b> £™ | 1    | ø    | ٥        | + 6  | . = | \$    | ntitled |   | ~ |   |   |   |   |   |   |
| -        |            |     | - 00   |     |         | •   | UF 4        | + X.)         | -    | -    | <i>,</i> |      |     | → V O |         |   |   | _ | _ | _ | _ | _ | _ |
| 🔝 Un     | ntitled    |     |        |     |         |     |             |               |      |      |          |      |     |       |         | × |   |   |   |   |   |   |   |
| 🗨 Unti   | tlad       |     | 2~     |     | 1       | _   | 1           |               |      | _    | _        | _    | _   |       |         |   |   |   |   |   |   |   |   |
| Cond     | ucu        | _   | · ~    |     | Y       |     | F           | req           |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        | 1   |         | 5   |             | 50            | )    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
|          |            |     |        | 2   |         | 15  |             | 125           |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        | 3   |         | 25  |             | 350           | )    |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        | 4   |         | 35  |             | 275           |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        | 5   |         | 45  |             | 250           |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        | 6   |         | 55  |             | 200           |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        | 7   |         | 65  |             | 40            |      |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
|          | umns (2/1) |     |        | 8   |         | 75  |             | 10            |      |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
| 📕 Y 📃    | _          |     |        | 9   |         | 85  |             | Ę             | >    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
| 🔺 Fre    | eq.        | ⊢   |        |     |         |     |             |               | +    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               | +-   |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               | +    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               | +    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
| Row      | 15         |     |        |     |         |     |             |               |      |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
| All row. |            | 9   |        |     |         |     |             |               | -    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
| Selecte  |            | 1   |        |     |         |     |             |               | -    |      | _        |      | _   |       | <br>    |   |   |   |   |   |   |   |   |
| Exclude  |            | 0   |        |     |         |     |             |               | +    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
| Hidden   |            | 0   |        |     |         |     |             |               | +    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
| Labelle  | :d         | 0   |        |     |         |     |             |               | +    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               | +    |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               |      |      |          |      |     |       | <br>    |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        |     | I       |     |             |               |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |
|          |            |     |        |     |         |     |             |               |      |      |          |      |     |       |         |   |   |   |   |   |   |   |   |

Input the data in JMP, pick the middle point of each range as the value of Y:

| ·                |             |                                       |               |                                                           |
|------------------|-------------|---------------------------------------|---------------|-----------------------------------------------------------|
| JMP - Untitleo   |             |                                       |               |                                                           |
| File Edit Tables |             |                                       | ools view wir |                                                           |
|                  | 🖬 🎒 👗 🖻 🖬 🖷 | Distribution                          |               | $P + \blacksquare \Rightarrow \bigcirc \bigcirc$ Untitled |
|                  |             | Y Fit Y by X                          |               |                                                           |
|                  | -           | Matched Pairs                         |               |                                                           |
| Untitled         | -           | E Fit Model                           |               |                                                           |
|                  |             | Modeling                              | 5. <b>K</b> 0 | ·                                                         |
|                  | 2           | Multivariate Mel                      | thods 🔹 🕨     | e                                                         |
|                  | 3           |                                       | liability 🕨 🕨 |                                                           |
|                  | 4           | 35                                    | 275           |                                                           |
|                  | 5           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 250           |                                                           |
|                  | 6           |                                       | 200           |                                                           |
|                  | 7           |                                       | 40            |                                                           |
| 💌 Columns (2/1)  | 8           |                                       | 10<br>5       |                                                           |
| Y<br>Freq        |             | 05                                    | 3             |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
| Rows             |             |                                       |               |                                                           |
| 12000 N. 100     | 9           |                                       |               |                                                           |
|                  | 1           |                                       |               |                                                           |
| Hidden           | 0           |                                       |               |                                                           |
| Labelled         | 0           |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             |                                       |               |                                                           |
|                  |             | 1 1                                   |               |                                                           |
|                  | 4           |                                       |               |                                                           |

Choose "Distribution" in "Analyze":

| JMP - Report: Distribution                                          |                                                           |                                                                                           |                                             |   |  |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------|---|--|--|--|--|--|
| File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help |                                                           |                                                                                           |                                             |   |  |  |  |  |  |
|                                                                     | 🖬 🖨 X 🖻 🛱                                                 | ┣?�� <i>♥</i> / ₽ P P                                                                     | ' + 🛛 ☴ 🗘 🔿 📗 Untitled                      | ~ |  |  |  |  |  |
| Untitled                                                            | rt: Distribution<br>oution of values in each c<br>Columns |                                                                                           | Action                                      |   |  |  |  |  |  |
| Y<br>Y                                                              |                                                           | Weight     aptional Numeric       Freq     optional Numeric       By     optional Numeric | Cancel       Remove       Recall       Help |   |  |  |  |  |  |
| Rows<br>All rows<br>Selected<br>Excluded<br>Hidden<br>Labelled      | 9 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 |                                                                                           | 58650855585558555855585558555               |   |  |  |  |  |  |

# Choose Y for "Y, Columns", Freq for "Freq".

|                                                        | iP - Report: Distribution                            |                                                                                                                   |                                        |   |  |
|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|--|
|                                                        |                                                      | Analyze Graph Tools View Window                                                                                   |                                        |   |  |
|                                                        | D 🚅 🛛 🖬 🎒 🕺 🖬 🛍                                      | 🛯 🕓 ? 🕹 💠 🥐 🖢 👂 🖉                                                                                                 | P + 🛛 🚍 🎝 🔿 🗍 Untitled                 | × |  |
| ) U                                                    | ntitled                                              |                                                                                                                   |                                        |   |  |
| €Un                                                    | 🔡 Report: Distribution                               |                                                                                                                   |                                        |   |  |
| ⊂Co<br>Y                                               | The distribution of values in each<br>Select Columns | column Cast Selected Columns into Roles V, Columns V, Columns V optional Weight optional Numeric Freq By optional | Action OK Cancel Remove Recall         |   |  |
|                                                        |                                                      |                                                                                                                   |                                        |   |  |
| Rov<br>All rov<br>Select<br>Excluc<br>Hidder<br>Labell | vs 9<br>ted 1<br>ded 0<br>n 0                        |                                                                                                                   | 50000000000000000000000000000000000000 |   |  |

Click "Ok":

| JMP - Untitled- Distribution of Y                                                                               |                                       |          |   |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|---|
| File Edit Tables Rows Cols DOE Ana                                                                              | alyze Graph Tools View Window Help    |          |   |
|                                                                                                                 | ····································· |          |   |
| 🖬 🖵 🖉 🖉 🖨 🖼 🗃                                                                                                   |                                       |          | × |
| The second se |                                       |          |   |
| Distributions                                                                                                   |                                       | <u>^</u> |   |
| <b>.</b> ♥ ♥                                                                                                    |                                       |          |   |
|                                                                                                                 |                                       |          |   |
| •                                                                                                               |                                       |          |   |
| 75                                                                                                              |                                       |          |   |
|                                                                                                                 |                                       |          |   |
| 50                                                                                                              |                                       |          |   |
|                                                                                                                 |                                       |          |   |
|                                                                                                                 |                                       |          |   |
| 25                                                                                                              |                                       |          |   |
| 20                                                                                                              |                                       |          |   |
|                                                                                                                 |                                       |          |   |
| 0                                                                                                               |                                       |          |   |
|                                                                                                                 |                                       |          |   |
| Quantiles                                                                                                       |                                       |          |   |
| 100.0% maximum 85.000                                                                                           |                                       |          |   |
| 99.5% 75.000<br>97.5% 65.000                                                                                    |                                       |          |   |
| 90.0% 55.000                                                                                                    |                                       |          |   |
| 75.0% guartile 45.000                                                                                           |                                       |          |   |
| 50.0% median 35.000                                                                                             |                                       |          |   |
| 25.0% quartile 25.000                                                                                           |                                       |          |   |
| 10.0% 15.000                                                                                                    |                                       |          |   |
| 2.5% 5.000<br>0.5% 5.000                                                                                        |                                       |          |   |
| 0.5% 5.000<br>0.0% minimum 5.000                                                                                |                                       |          |   |
|                                                                                                                 |                                       |          |   |
| Moments                                                                                                         |                                       |          |   |
| Mean 35.651341<br>Std Dev 15.141114                                                                             |                                       |          |   |
| Std Dev 15,141114<br>Std Err Mean 0,4191337                                                                     |                                       |          |   |
| upper 95% Mean 36.473591                                                                                        |                                       |          |   |
| lower 95% Mean 34,829091                                                                                        |                                       | Ŧ        |   |
| N 1305                                                                                                          |                                       |          |   |
|                                                                                                                 |                                       |          |   |

Here we could change the width of the columns in the graph by double clicking the axis of the graph:

| JMP - Untitled- Distribution of Y                    |                                      |  |
|------------------------------------------------------|--------------------------------------|--|
| File Edit Tables Rows Cols DOE An                    | nalyze Graph Tools View. Window Help |  |
| 🗈 D 🚅 🛛 🖬 🎒 🐇 🛍 🛍                                    | 🗟 ? ♧ ‡ ? ♪ + ₽ = 4 ○   Untitled 🗸 🗸 |  |
| HI UNTITIES DISTRIBUTION OF Y                        |                                      |  |
| ▼ ■ Distributions                                    |                                      |  |
| ¥ ▼γ                                                 |                                      |  |
| T T                                                  |                                      |  |
| •2                                                   |                                      |  |
| 75-                                                  |                                      |  |
|                                                      |                                      |  |
| 50-                                                  | JMP: Y Axis Specification            |  |
| 30                                                   | Format: Best 🗸                       |  |
|                                                      | Field Width 9                        |  |
| 25                                                   | Field Width 9                        |  |
|                                                      | Minimum:                             |  |
|                                                      |                                      |  |
|                                                      | Maximum: 100 Font                    |  |
| 🕈 Quantiles                                          | Increment: 25                        |  |
| 100.0% maximum 85.000                                |                                      |  |
| 99.5% 75.000                                         | # Minor Ticks: 0                     |  |
| 97.5% 65.000                                         |                                      |  |
| 90.0% 55.000<br>75.0% quartile 45.000                | Major V                              |  |
| 50.0% median 35.000                                  | Minor 🗸                              |  |
| 25.0% quartile 25.000                                |                                      |  |
| 10.0% 15.000                                         | 50 Add Ref Line                      |  |
| 2.5% 5.000<br>0.5% 5.000                             | Remove                               |  |
| 0.0% minimum 5.000                                   |                                      |  |
| ▼ Moments                                            |                                      |  |
| Mean 35.651341                                       |                                      |  |
| Std Dev 15.141114                                    |                                      |  |
| Std Err Mean 0.4191337                               |                                      |  |
| upper 95% Mean 36.473591<br>lower 95% Mean 34.829091 |                                      |  |
| N 1305                                               |                                      |  |
| L.                                                   |                                      |  |

## Change the Increment to 20:

| JMP - Untitled- Distribution of Y           |                                                             |  |
|---------------------------------------------|-------------------------------------------------------------|--|
| File Edit Tables Rows Cols DOE Ar           | Inalyze Graph Tools View Window Help                        |  |
|                                             | ▶ ? & ∲ ( <sup>(h</sup> ) <i>▶</i> ዖ ፆ + 圓 ☴ 今 〇 Untitled 🗸 |  |
| He untilled-Distribution of Y               |                                                             |  |
| Distributions                               |                                                             |  |
| ¥Υ                                          | f                                                           |  |
|                                             |                                                             |  |
| 100-                                        |                                                             |  |
|                                             |                                                             |  |
| 75-                                         | JMP: Y Axis Specification                                   |  |
|                                             |                                                             |  |
|                                             | Format: Best V OK                                           |  |
|                                             | Field Width 9 Cancel                                        |  |
|                                             |                                                             |  |
| 25                                          | Minimum: 0 Help                                             |  |
|                                             | Maximum: 100 Font                                           |  |
|                                             |                                                             |  |
|                                             | Increment: 20                                               |  |
| 🔻 Quantiles                                 | # Minor Ticks: 0                                            |  |
| 100.0% maximum 85.000                       |                                                             |  |
| 99.5% 75.000                                | Tickmark Gridline Rotated Tick Labels                       |  |
| 97.5% 65.000<br>90.0% 55.000                | Major 🔽 🗌                                                   |  |
| 75.0% quartile 45.000                       | Minor 🔽 🗌                                                   |  |
| 50.0% median 35.000                         | 50 Add Ref Line                                             |  |
| 25.0% quartile 25.000<br>10.0% 15.000       |                                                             |  |
| 2.5% 5.000                                  | Remove                                                      |  |
| 0.5% 5.000                                  |                                                             |  |
| 0.0% minimum 5.000                          |                                                             |  |
| Moments                                     |                                                             |  |
| Mean 35.651341<br>Std Dev 15.141114         |                                                             |  |
| Std Dev 15.141114<br>Std Err Mean 0.4191337 |                                                             |  |
| upper 95% Mean 36.473591                    |                                                             |  |
| Lawren OTOL Massa - Dit 000001              |                                                             |  |

## Click "OK".



To Show the percentage of each bar, click the hot spot left to "Y" and choose "Show Percents" in "Histogram Options":

| 🕴 JMP - Untitled- Distribution of Y                | Y                   |                                                |          |  |
|----------------------------------------------------|---------------------|------------------------------------------------|----------|--|
| File Edit Tables Rows Cols DOE A                   | Analyze Graph Tools | View Window Help                               |          |  |
| 🗋 🗅 🚅 🛃 🖨 🍏 👗 🛍 🛍                                  | ▶ ? ♣ ♣             | 🖱 🖢 온 👂 🕂 🙆 🚍 🔷 🔿 🔛 Untitled                   | ~        |  |
| The Untilled-Distribution of Y                     |                     |                                                |          |  |
| <ul> <li>Distributions</li> </ul>                  |                     |                                                |          |  |
|                                                    |                     |                                                |          |  |
| Display Options                                    |                     |                                                |          |  |
|                                                    | • Histogram         |                                                |          |  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              | • Vertical          |                                                |          |  |
| ✓ Outlier Box Plot                                 | Std Error Bars      |                                                |          |  |
| Quantile Box Plot                                  | Count Axis          |                                                |          |  |
| Stem and Leaf                                      | Prob Axis           |                                                |          |  |
| CDF Plot                                           | Density Axis        |                                                |          |  |
| Test Mean                                          | Show Percents Di    | isplays each bars' percent of the total on the |          |  |
| Test Std Dev                                       | Show Counts         | listogram.                                     |          |  |
| Confidence Interval                                |                     |                                                |          |  |
| Prediction Interval                                |                     |                                                |          |  |
| Tolerance Interval                                 |                     |                                                |          |  |
| Capability Analysis                                |                     |                                                |          |  |
| Fit Distribution                                   |                     |                                                |          |  |
| Save 🕨                                             |                     |                                                |          |  |
| 97.5% 75.000                                       |                     |                                                |          |  |
| 90.0% 55.000                                       |                     |                                                |          |  |
| 75.0% quartile 45.000                              |                     |                                                |          |  |
| 50.0% median 35.000                                |                     |                                                |          |  |
| 25.0% quartile 25.000                              |                     |                                                |          |  |
| 10.0% 15.000<br>2.5% 5.000                         |                     |                                                |          |  |
| 0.5% 5.000                                         |                     |                                                |          |  |
| 0.0% minimum 5.000                                 |                     |                                                |          |  |
| ▼ Moments                                          |                     |                                                |          |  |
| Mean 35.651341                                     |                     |                                                |          |  |
| Std Dev 15.141114                                  |                     |                                                |          |  |
| Std Err Mean 0.4191337<br>upper 95% Mean 36.473591 |                     |                                                | <b>_</b> |  |
| upper 95% Mean 36,473591                           |                     |                                                |          |  |
|                                                    |                     |                                                | 12.2     |  |



The mean and variance could be easily found in the output "Moments" below the graph. Here the Mean is 35.651341. The variance 15.141114.

2. In scenario 2, the Percent Dissolution of tablets as a function of time is as the following:

| Time | % Dissolution |
|------|---------------|
| 0    | 0             |
| 15   | 35            |
| 30   | 55            |
| 45   | 70            |
| 60   | 83            |
| 75   | 92            |
| 90   | 97            |
| 105  | 98            |
| 120  | 99            |

Use JMP to plot the Distribution and calculate the time at which 85% of the tablet has been dissolved.

Solution:

| Input the data:             |         |              |                  |                 |       |                     |          |  |  |  |  |
|-----------------------------|---------|--------------|------------------|-----------------|-------|---------------------|----------|--|--|--|--|
| F JMP - jmp solution for #2 |         |              |                  |                 |       |                     |          |  |  |  |  |
| File Edit Tables Ro         |         | analyze Graj | oh Tools Vie     | w Window Help   |       |                     |          |  |  |  |  |
|                             | a % 🖻 🖻 | <b>b</b> ?   | 各 🔶 🖗            | <u>ታ ዖ ዖ + </u> | \$\$0 | jmp solution for #2 | ~        |  |  |  |  |
| 📓 jmp solution fo           | or #2   |              |                  |                 |       |                     |          |  |  |  |  |
| ▼ jmp solution for #2       | •       | Time         | %<br>Dissolution |                 |       |                     | <u> </u> |  |  |  |  |
|                             | 1       | 0            | 0                |                 |       |                     |          |  |  |  |  |
|                             | 2       | 15           | 35               |                 |       |                     |          |  |  |  |  |
|                             | 3       | 30           | 55               |                 |       |                     |          |  |  |  |  |
|                             | 4       | 45           | 70               |                 |       |                     | _        |  |  |  |  |
|                             | 5       | 60           | 83               |                 |       |                     | -        |  |  |  |  |
|                             | 6       | 75<br>90     | 92               |                 |       |                     | -        |  |  |  |  |
|                             | 8       | 90           | 97               |                 |       |                     | -        |  |  |  |  |
| Columns (2/0)               | 9       | 120          | 99               |                 |       |                     | -        |  |  |  |  |
| 4 % Dissolution             |         |              |                  |                 |       |                     |          |  |  |  |  |
| Rows                        |         | i i i        |                  |                 |       |                     |          |  |  |  |  |
| All rows 9<br>Selected 0    |         |              |                  |                 |       |                     |          |  |  |  |  |
| Excluded 0                  |         |              |                  |                 |       |                     | _        |  |  |  |  |
| Hidden 0                    |         |              |                  |                 |       |                     | _        |  |  |  |  |
| Labelled 0                  |         |              |                  |                 |       |                     | -        |  |  |  |  |
|                             |         | -            |                  |                 |       |                     |          |  |  |  |  |
|                             |         |              |                  |                 |       |                     |          |  |  |  |  |
|                             |         |              |                  |                 |       |                     |          |  |  |  |  |
|                             | 3       |              |                  |                 |       |                     |          |  |  |  |  |

| 🕴 JMP - jmp solu                       |                       |                                                           |                       |              |            |                   |   |
|----------------------------------------|-----------------------|-----------------------------------------------------------|-----------------------|--------------|------------|-------------------|---|
| File Edit Tables R                     | ows Cols DOE          | Analyze <mark>Graph</mark>                                | Tools View            | Window Help  |            |                   |   |
|                                        | 1 🚳 🕹 📭 🖬             |                                                           |                       | P + 🛛 =      | 5 � O   jm | p solution for #2 | * |
| jmp solution f                         | for #2                | Y <mark>x</mark> Fit Y by X<br>Ratched Pairs<br>Fit Model |                       |              |            |                   |   |
| Comp soldion for #2                    | 1<br>2<br>3<br>4<br>5 | Modeling<br>Multivariate M<br>Survival and R<br>45<br>60  |                       | )<br>)<br>)  |            |                   |   |
|                                        | 6                     | 75                                                        | 92                    |              |            |                   |   |
|                                        | 7                     | 90                                                        | 97                    |              |            |                   |   |
| Columns (2/0)<br>Time<br>% Dissolution | 9                     | 105                                                       | 98<br>99              |              |            |                   |   |
|                                        |                       |                                                           |                       |              |            |                   |   |
|                                        |                       |                                                           |                       |              |            |                   |   |
|                                        | <b>T</b>              |                                                           |                       |              |            |                   |   |
| JMP - Report: F                        |                       |                                                           | <b>T</b> 1 10 10 10 1 | urada a tuda |            |                   |   |
| File Edit Tables R                     |                       |                                                           |                       |              |            |                   | ~ |
|                                        |                       |                                                           | ¥* (*) 🖬 🖇            | ✓ T Ш ⇒      | ישע U      | solution for #2   |   |
| jmp solution f                         | or #2                 |                                                           |                       |              |            |                   |   |

## Choose "Fit Y by X" in "Analyze":

|                         | OCE Analyze Graph Tools View Window |               |                    |  |
|-------------------------|-------------------------------------|---------------|--------------------|--|
|                         | ■ 🔁   😼 ? 🕹 💠 🥐 🕹 👂 👂               | + 🛛 🗏 🖓 🔿 📋 🛛 | mp solution for #2 |  |
| jmp solution for #2     |                                     |               |                    |  |
| 💌 📠 Report: Fit Y by X  | Contextual                          |               | <u>-</u>           |  |
|                         | Modeling types determine analysis.  | Action        |                    |  |
| Time                    | Y, Response required                | ОК —          |                    |  |
|                         | X, Factor required optional         | Cancel        |                    |  |
|                         | Block                               | Remove        |                    |  |
| Til Bivariate Uneway    | Weight optional Numeric             | Recal         |                    |  |
|                         | Freq Optional Numeric               |               |                    |  |
|                         | By optional                         |               |                    |  |
|                         |                                     | <u> </u>      |                    |  |
|                         |                                     |               |                    |  |
|                         |                                     |               |                    |  |
| Rows     All rows     9 |                                     |               |                    |  |
| Selected 0              |                                     |               |                    |  |
| Hidden 0                |                                     |               |                    |  |
| Labelled 0              |                                     |               |                    |  |
|                         |                                     |               |                    |  |
|                         |                                     |               |                    |  |
| T.                      |                                     |               |                    |  |

| 🕴 JMP - Report: F        | it Y by X - Cont      | extual        |                                    |         |                     |   |
|--------------------------|-----------------------|---------------|------------------------------------|---------|---------------------|---|
| File Edit Tables Ro      | ows Cols DOE a        | Analyze Graph | Tools View Window                  | Help    |                     |   |
| 🗈 🗅 🚅 🛃 🖬                | 😂 % 🖪 🛍               | k ? 🕹         | 💠 🖑 🖕 🖉 🖗                          | + ◙ ☴今० | jmp solution for #2 | ~ |
| jmp solution for         | or #2                 |               |                                    |         |                     |   |
| 💌 jmp 🔛 Report: F        | it Y by X - Con       | textual       |                                    |         | <u>_</u>            |   |
| Distribution of Y        | / for each X. Modelii |               | ne analysis.<br>Columns into Roles | Action  |                     |   |
| Time                     |                       | Y, Response   | % Dissolution                      | ОК      |                     |   |
| Bivariate                |                       | X, Factor     | Time<br>optional                   | Cancel  |                     |   |
|                          | ¢φ¢                   | Block         | optional                           | Remove  |                     |   |
| Tit Bivariate O          | neway                 | Weight        | optional Numeric                   | Recall  |                     |   |
| 4 % 🖬 🎵                  |                       | Freq          | optional Numeric                   | Help    |                     |   |
| Logistic Co              | ontingency            | Ву            | optional                           |         |                     |   |
|                          |                       |               |                                    |         |                     |   |
|                          |                       |               |                                    |         |                     |   |
| Rows                     |                       |               |                                    |         |                     |   |
| All rows 9               |                       | <u> </u>      |                                    |         |                     |   |
| Selected 0<br>Excluded 0 |                       |               |                                    |         |                     |   |
| Hidden 0<br>Labelled 0   |                       |               |                                    |         |                     |   |
| Labelled 0               |                       |               |                                    |         |                     |   |
|                          |                       |               |                                    |         |                     |   |
|                          |                       |               |                                    |         |                     |   |
|                          | 21                    |               |                                    |         | <u>*</u>            |   |
|                          |                       |               |                                    |         |                     |   |

Choose % Dissolution as "Y, Response", Time as "X, Factor":

# Click "OK":

| 🗧 JMP - jmp solution for #2- Fit Y by X of % Dissolution by Time 4  |          |
|---------------------------------------------------------------------|----------|
| File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help |          |
| 📋 🗅 😅 😹 📾 🛍 🕒 ? 😵 🌵 🖑 🎍 🕫 🕈 🕇 🗧 🤿 🔿 🥼 jmp solution for #2           | ~        |
| 🗒 jmp solution for #2                                               | ×        |
| 🖭 🖬 jmp solution for #2- Fit Y by X of 💶 🗖 🔀                        | <u> </u> |
| Bivariate Fit of % Dissolution By Time                              |          |
|                                                                     |          |
| 75-                                                                 |          |
|                                                                     |          |
|                                                                     |          |
| 50-         .           200         .           25-         .       |          |
| in <sup>2</sup> 25−<br><i>i</i> π <sup>3</sup>                      |          |
| <b>▲</b> % <sub>0-</sub> .                                          |          |
|                                                                     | -        |
| -25 0 25 50 75 100 125                                              |          |
| Time                                                                |          |
|                                                                     |          |
|                                                                     |          |
| Rows                                                                | •        |
| All rows 9                                                          |          |
| Excluded 0                                                          |          |
| Hidden 0                                                            | - 1      |
|                                                                     |          |
|                                                                     |          |
|                                                                     |          |
|                                                                     |          |

Click the hot spot left to "Bivariate Fit of % Dissolution By Time" and choose "3, cubic" from "Fit Polynomial":





From the polynomial function JMP offered, we could calculate the time when Dissolution is 85%:

x = 61.9584

# **Comparison Tests**

3. Two different catalysts are studied in the batch reactor. (Scenario 1) Differece runs are made with each catalyst and the yield of A measured after 1 hour. (all other factors held constant)

| Catalyst C1 | Catalyst C2 |
|-------------|-------------|
| 74          | 71          |
| 70          | 74          |
| 69          | 73          |
| 71          | 75          |
| 72          | 77          |

- (1) Determine the mean and variance of each catalyst.
- (2) Use the appropriate distribution to decide whether there is a difference at the 95% confidence level.
- (3) At what level is there a difference between the two catalyst (p value).
- (4) Use an F test to determine the level at which there is a difference between the variance of the yield between the catalysts.

Solution:

Input the data. Here Catalyst is the type of Catalyst and its data type is "Character":

| 🕴 JMP - jmp solut                                                                 |         | Mar Mar and an and an an |               |                  |                    |   |
|-----------------------------------------------------------------------------------|---------|--------------------------|---------------|------------------|--------------------|---|
| File Edit Tables Ro                                                               |         |                          |               |                  |                    |   |
|                                                                                   | 🎒 👗 🛍 🖻 | 🛛 🔁 🖗 🌵                  | 🖑 🎍 👂 👂       | + 🛛 ≒ 🎝 🔿 🗍 🗍 jn | np solution for #3 | × |
| 🛗 jmp solution f                                                                  | or #3   |                          |               |                  |                    |   |
| ▼ jmp solution for #3                                                             |         | Catalyst<br>C1<br>C1     | y<br>74<br>70 |                  | <u> </u>           |   |
|                                                                                   |         | C1                       | 69<br>71      |                  |                    |   |
|                                                                                   | 5       | C1<br>C2                 | 72            |                  |                    |   |
|                                                                                   |         | C2                       | 71            |                  |                    |   |
| Columns (2/1)                                                                     |         | C2                       | 73            |                  |                    |   |
| 🔥 Catalyst                                                                        |         | C2                       | 75            |                  |                    |   |
| 48                                                                                |         | C2                       | 77            |                  |                    |   |
| Rows     All rows     10     Selected     1     Excluded     0     Labelled     0 |         |                          |               |                  |                    |   |

# Choose "Fit Y by X" in "Analyze":

| 🔻 JMP - jmp solut      | tion for #3 |                          |    |                                       |
|------------------------|-------------|--------------------------|----|---------------------------------------|
|                        |             | Analyze Graph Tools View |    |                                       |
|                        | 🕘 👗 🖻 🖬     | F Distribution           | 15 | P + 🛛 ☴ 🆓 🔿 🔢 jmp solution for #3 🛛 🔽 |
|                        |             | Y x Fit Y by X           |    |                                       |
| 📠 jmp solution f       | or #3       | 🔀 Matched Pairs          |    |                                       |
| • jmp solution for #3  | <b>(</b>    | 💷 Fit Model              |    |                                       |
|                        |             |                          | -  |                                       |
|                        | 1           | Modeling                 |    |                                       |
|                        | 2           | Multivariate Methods     |    |                                       |
|                        | 3           | Survival and Reliability |    |                                       |
|                        |             | C1                       | 71 |                                       |
|                        |             | C1                       | 72 |                                       |
|                        |             | C2                       | 71 |                                       |
| Columns (2/1)          |             | C2                       | 74 |                                       |
| Columns (2/1)          |             | C2                       | 73 |                                       |
|                        |             | C2                       | 75 |                                       |
|                        | 10          | C2                       | 77 |                                       |
|                        |             |                          |    |                                       |
|                        |             |                          |    |                                       |
|                        |             |                          |    |                                       |
|                        |             |                          | 1  |                                       |
|                        |             |                          |    |                                       |
|                        |             |                          |    |                                       |
| Rows                   |             |                          | 8  |                                       |
| All rows 10            |             |                          |    |                                       |
| Selected 1             |             | 1                        |    |                                       |
| Excluded 0             |             |                          |    |                                       |
| Hidden 0<br>Labelled 0 |             |                          |    |                                       |
| Labelleu U             |             |                          | -  |                                       |
|                        |             |                          | -  |                                       |
|                        |             |                          |    |                                       |
|                        |             |                          | -  |                                       |
|                        | <           | 1                        | -  |                                       |
|                        |             |                          |    |                                       |

| 🕴 JMP - Report: Fit Y by X - Contextual             |                                       | -10    |                     |   |
|-----------------------------------------------------|---------------------------------------|--------|---------------------|---|
| File Edit Tables Rows Cols DOE Analyze Graph        |                                       |        |                     |   |
| 📔 🗅 🚅 🗟 🖬 🎒 X 🗞 🛍 🚺 🕟 ? 🍕                           | • 幸 舎 🖕 タ タ +                         |        | jmp solution for #3 | ¥ |
| imp solution for #3                                 |                                       |        |                     |   |
| 💌 🏛 Report: Fit Y by X - Contextual                 |                                       |        | -                   |   |
| Distribution of Y for each X. Modeling types determ | ine analysis.<br>I Columns into Roles | Action |                     |   |
| Catalyst Y, Response                                | <b>required</b><br>optional           | ОК     |                     |   |
| X, Factor                                           | ptional                               | Cancel |                     |   |
| Co Bivariate Oneway Weinht                          | ) [optional                           | Remove |                     |   |
| Weight                                              | optional Numeric                      | Help   |                     |   |
| Logistic Contingency By                             | optional                              |        |                     |   |
|                                                     |                                       |        |                     |   |
|                                                     |                                       |        |                     |   |
| Rows                                                |                                       |        |                     |   |
| All rows 10                                         |                                       |        |                     |   |
| Excluded 0<br>Hidden 0                              |                                       |        |                     |   |
| Labelled 0                                          |                                       |        |                     |   |
|                                                     |                                       |        |                     |   |
|                                                     |                                       |        |                     |   |
|                                                     |                                       |        | Ŧ                   |   |
|                                                     |                                       |        |                     |   |

# Choose y as "Y, Response" and Catalyst as "X, Factor":

| 100 million (100 million) |                   | by X - Contextual                                                                                               |                                    |                                          |                     |   |
|---------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|---------------------|---|
| File                      | Edit Tables Rows  | Cols DOE Analyze Graph                                                                                          | Tools View Window H                | elp                                      |                     |   |
|                           | 🗅 🧀 🖪 🖶 🎒         | ) X 🛍 🔂 ? 🕹                                                                                                     | 💠 🖑 🖢 👂 🖊 +                        |                                          | jmp solution for #3 | ~ |
| -                         | mp solution for # | a historia a su como de la como de |                                    | a an |                     |   |
| 💌 jm                      | 🖥 🔛 Report: Fit Y | / by X - Contextual                                                                                             |                                    |                                          | -                   |   |
|                           | Select Columns    | each X. Modeling types determi                                                                                  | ne analysis.<br>Columns into Roles | Action                                   |                     |   |
|                           | ll Catalyst<br>⊿y | Y, Response                                                                                                     | <b>↓</b> γ<br>optional             | ОК                                       |                     |   |
|                           | Oneway            | X, Factor                                                                                                       | <b>IL</b> Catalyst<br>optional     | Cancel                                   |                     |   |
|                           |                   |                                                                                                                 | optional                           | Remove                                   |                     |   |
| ll∎ C                     | Bivariate Onew    | ay Weight                                                                                                       | optional Numeric                   | Recall                                   |                     |   |
|                           |                   | Freq                                                                                                            | optional Numeric                   | Help                                     |                     |   |
|                           |                   | gency By                                                                                                        | optional                           |                                          |                     |   |
| R                         |                   |                                                                                                                 |                                    |                                          |                     |   |
| All ro<br>Selec           |                   |                                                                                                                 |                                    |                                          |                     |   |
| Exclu                     | uded 0            |                                                                                                                 |                                    |                                          |                     |   |
| Hidde<br>Labe             |                   |                                                                                                                 |                                    |                                          |                     |   |
|                           |                   |                                                                                                                 |                                    |                                          |                     |   |
|                           |                   |                                                                                                                 |                                    |                                          |                     |   |
|                           |                   |                                                                                                                 | (C                                 |                                          |                     |   |
|                           | 3                 | 1                                                                                                               |                                    |                                          |                     |   |
|                           | 16                |                                                                                                                 |                                    |                                          |                     |   |

#### Click "OK":

| ML 🕴    | P - jmp sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ution for #3- I       | Fit Y by X of y b | y Catalyst 2 |                |         |                |           |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|--------------|----------------|---------|----------------|-----------|--|
| File E  | dit Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rows Cols DO          | E Analyze Graph   | Tools View V | Window Help    | 0       |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>- 6</b> % <b>-</b> | 68 ? 3            | • 💠 🖑 🎍 ۶    | י <b>א</b> א ו | ∎ ⇒ ◇ ○ | jmp solution f | or #3 🛛 💌 |  |
| in in   | np solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | for #3                |                   |              |                |         |                |           |  |
| 💌 jmp   | 📓 jmp sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lution for #3-        | Fit Y by X of y.  |              |                |         | <u> </u>       |           |  |
|         | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | of y By Catalys   |              | 4              |         |                |           |  |
|         | And and a state of the local division of the |                       |                   |              |                |         |                |           |  |
|         | 77.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                   | •            | U              |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |              | 9              |         |                |           |  |
|         | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                     |                   |              | 1              |         |                |           |  |
|         | 75 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                   |              | 2              |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |              | 2              |         |                |           |  |
|         | >72.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                     |                   | •            | 4              |         |                |           |  |
| Co      | ~72.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · ·               |                   |              | 3              |         |                |           |  |
| IL C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                    |                   |              | 5              |         |                |           |  |
|         | 70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                    |                   |              | 7              |         |                |           |  |
| 12-272  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |              | ·              |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                    |                   |              |                |         |                |           |  |
|         | 67.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                   |              | -              |         |                |           |  |
|         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C1                    | 10                | C2 -         | -              |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |              |                |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Catalyst          |              |                |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     |                   |              |                |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |                   |              | 10             |         |                |           |  |
| Ro      | WS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                   |              | -              |         |                |           |  |
| All rov |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                    |                   |              | -              |         |                |           |  |
| Select  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                     |                   |              |                |         |                |           |  |
| Exclud  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                     | 0                 |              |                |         |                |           |  |
| Hidde   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                     | 0                 |              | 10             |         |                |           |  |
| Labell  | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                     | 0                 |              |                |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |              |                |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |              |                |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |              |                |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 0                 |              | 1              |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                    |                   |              |                |         |                |           |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |              |                |         |                |           |  |

Click the hot spot left to "Oneway Analysis of y By Catalyst" and choose "Means/Anova/Pooled t", "Means and Std Dev" and "t Test":

| - JWP                                                          | - Just solution for #3- F                                                                                                                                                                                        | it Y by X of y by Catalyst 2 | 2                                                             |                       |   |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------|-----------------------|---|
| File Edit                                                      | t Tables Rows Cols DOE                                                                                                                                                                                           | Analyze Graph Tools View     | v Window Help                                                 |                       |   |
| D D                                                            | 📽 🖪 🖬 🚭 🐰 🗞 🕼 (                                                                                                                                                                                                  | 🔒 🕟 ? 🕹 💠 🤭 🎍                | PP+ 🛛 🚍 4                                                     | ) jmp solution for #3 | ~ |
| 0                                                              | p solution for #3                                                                                                                                                                                                |                              |                                                               |                       |   |
| , sint ∎                                                       | imp solution for #3- F                                                                                                                                                                                           | it Y by X of y 🔳 🗖 🚺         |                                                               | <u></u>               |   |
|                                                                | Quantiles<br>Means/Anova/Pooled t                                                                                                                                                                                | f v Ry Catalyst              | 4<br>0<br>9                                                   |                       |   |
| ♥Co<br>IL Ca<br>▲ y                                            | Means and Std Dev<br>t Test<br>Compare Means<br>Nonparametric<br>UnEqual Variances<br>Equivalence Test<br>Power<br>Set a Level<br>Normal Quantile Plot<br>CDF Plot<br>Matching Column<br>Save<br>Display Options | ·<br>·<br>·<br>·<br>·        | 1           2           4           3           5           7 |                       |   |
| Rows<br>All rows<br>Selected<br>Excluder<br>Hidden<br>Labelled | 10<br>d 0<br>d 0                                                                                                                                                                                                 |                              |                                                               |                       |   |

| 🕴 JMP - jmp solution for #3- Fit Y by X of y by Catalyst 2                                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help                                                                                                                                     |  |
| 🗈 🗅 🗃 🗟 🖶 🎒 🏙 💫 ? 💠 🌩 🥙 🖢 タ タ + 🛛 🚍 今 〇 🔢 jmp solution for #3 🔷                                                                                                                                         |  |
| 🖹 jmp solution for #3- Fit Y by X of y by Catalyst 2                                                                                                                                                    |  |
| Dneway Analysis of y By Catalyst       77.5       75.5       70       67.5       C1       C2       Catalyst                                                                                             |  |
| Oneway Anova                                                                                                                                                                                            |  |
| ▼ Summary of Fit<br>Rsquare 0.360294<br>Adj Rsquare 0.280331<br>Root Mean Square Error 2.085665<br>Mean of Response 72.6<br>Observations (or Sum Wgts) 10                                               |  |
| ▼ t Test                                                                                                                                                                                                |  |
| C2-C1<br>Assuming equal variances<br>Difference 2.8000 t Ratio 2.122675<br>Std Err Dif 1.3191 DF 8<br>Upper CL Dif 5.8418 Prob > t 0.0333*<br>Confidence 0.95 Prob < t 0.09667<br>-4 -3 -2 -1 0 1 2 3 4 |  |

| JMP - jmp solution for #3- Fit Y by X of y by Catalyst 2                                            |  |
|-----------------------------------------------------------------------------------------------------|--|
| File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help                                 |  |
| 🖹 🗅 😅 🗟 🖶 🎒 🛍 🗟 🕓 ? 💠 🌩 🥙 🎍 오 タ + 🛽 🚍 今 〇 🔢 jmp solution for #3 🔤                                   |  |
| 🗟 jmp solution for #3- Fit Y by X of y by Catalyst 2                                                |  |
| 💌 🖲 Oneway Analysis of y By Catalyst                                                                |  |
| 🕈 Oneway Anova                                                                                      |  |
| ▼ t Test                                                                                            |  |
|                                                                                                     |  |
| Analysis of Variance                                                                                |  |
| Source DF Sum of Squares Mean Square F Ratio Prob > F<br>Catalyst 1 19.600000 19.6000 4.5057 0.0665 |  |
| Error 8 34,800000 4,3500                                                                            |  |
| C. Total 9 54.400000                                                                                |  |
| 👻 Means for Oneway Anova                                                                            |  |
| Level Number Mean Std Error Lower 95% Upper 95%                                                     |  |
| C1 5 71.2000 0.93274 69.049 73.351                                                                  |  |
| C2 5 74.0000 0.93274 71.849 76.151<br>Std Error uses a pooled estimate of error variance            |  |
| Means and Std Deviations                                                                            |  |
| Level Number Mean Std Dev Std Err Mean Lower 95% Upper 95%                                          |  |
| C1 5 71.200 1.9235 0.8602 6.812 73.588                                                              |  |
| C2 5 74.0000 2.23607 1.0000 71.224 76.776                                                           |  |
| 🕈 t Test                                                                                            |  |
| C2-C1                                                                                               |  |
| Assuming unequal variances Difference 2.8000 t Ratio 2.122675                                       |  |
| Std Err Dif 1.3191 DF 7.825278                                                                      |  |
| Upper CL Dif 5.8537 Prob > [t] 0.0673                                                               |  |
| Lower CL Dif -0.2537 Prob > t 0.0337*                                                               |  |
| Confidence 0.95 Prob < t 0.9663 -4 -3 -2 -1 0 1 2 3 4                                               |  |
|                                                                                                     |  |

(1) From the output, the mean and variance for C1 and C2 are 71.2,

1.92354 and 74, 2.23607.

(2)and (3). From the t test, there is a significant difference between the means and the p-value .0337.

(4) From "Analysis of Variance", the p-value for F test is .0665, which is not significant.

## **Regression Analysis**

4. Once the API is produced in a reactor described in Scenario 1, crystallization from solution is to separate the desired product  $C(t_f)$  from  $A(t_f)$  and  $B(t_f)$  once the impurity  $D(t_f)$  has been removed. In general for a pharmaceutical process crystallization may be used to achieve sufficient product purity, to minimize the filtration time or to achieve tablet stability when mixed with other crystals of other chemical species before forming a tablet. In this example we will dwell only on a single criterion filtration time In this example, based on the work of Togkalidou et al (2001), "Experimental Design and Inferential Modeling in Pharmaceutical Crystallization (AIChe Journal, Vo 27, No1), a pharmaceutical salt was crystallized in a baffled reactor, where the supersaturation was created by adding a less efficient solvent that was miscible in the original solvent. The details are not relevant for the example but the student is referred to the paper if more information about the crystallization process is required.

| Experiment<br>Number | Agitation(rpm) | Seed<br>Amount<br>(% of<br>Batch) | Temperature<br>(deg C) | Charge<br>Time<br>h | Filtration<br>Time<br>Min |
|----------------------|----------------|-----------------------------------|------------------------|---------------------|---------------------------|
| 1                    | 2200           | 4                                 | 20                     | 6                   | 150                       |
| 2                    | 400            | 5                                 | 15                     | 3                   | 105                       |
| 3                    | 1300           | 3.5                               | 15                     | 9                   | 165                       |
| 4                    | 2200           | 4                                 | 17.5                   | 7.5                 | 170                       |
| 5                    | 3100           | 3.5                               | 17.5                   | 7.5                 | 90                        |
| 6                    | 2200           | 4                                 | 20                     | 6                   | 155                       |
| 7                    | 4000           | 5                                 | 20                     | 6                   | 50                        |
| 8                    | 400            | 3                                 | 20                     | 6                   | 280                       |
| 9                    | 1300           | 3.5                               | 22.5                   | 4.5                 | 122                       |
| 10                   | 2200           | 4                                 | 22.5                   | 4.5                 | 100                       |
| 11                   | 3100           | 4.5                               | 25                     | 9                   | 82                        |
| 12                   | 2200           | 4                                 | 20                     | 6                   | 145                       |

The following data were collected:

Use Regression Analysis from JMP to determine a regression model and the conditions under which the filtration time is minimized.

### Solution:

# (1) Run a regression model with all four factors in the model using the steps as showed in the JMP tutorial S2E4 and S2E5:

| ▼ Summary              | of Fi   | t         |        |     |          |      |        |      |  |
|------------------------|---------|-----------|--------|-----|----------|------|--------|------|--|
| RSquare                |         |           | 0.700  | 772 |          |      |        |      |  |
| RSquare Adj            |         |           | 0.529  | 785 |          |      |        |      |  |
| Root Mean So           | juare E | rror      | 40.42  | 272 |          |      |        |      |  |
| Mean of Resp           | onse    |           | 13     | 4.5 |          |      |        |      |  |
| Observations           | (or Su  | m Wgts)   |        | 12  |          |      |        |      |  |
| ▼ Analysis of Variance |         |           |        |     |          |      |        |      |  |
| Source                 | DF S    | 5um of Sq | uares  | Меа | n Square | F    | Ratio  |      |  |
| Model                  | 4       | 2678      | 7.025  |     | 6696.76  | 4    | .0984  |      |  |
| Error                  | 7       | 1143      | 7.975  |     | 1634.00  | Pro  | ob > F |      |  |
| C. Total               | 11      | 3822      | 5.000  |     |          | 0.   | 0506   |      |  |
| Lack Of Fi             | t       |           |        |     |          |      |        |      |  |
| Source                 | DF      | Sum of    | Square | s M | lean Squ | are  | F Ra   | itio |  |
| Lack Of Fit            | 5       | 11        | 387.97 | 5   | 2277     | 60   | 91.10  | )38  |  |
| Pure Error             | 2       |           | 50.00  | 0   | 25       | .00  | Prob 0 | > F  |  |
| Total Error            | - 7     | 11        | 437.97 | 5   |          |      | 0.010  | )9*  |  |
|                        |         |           |        |     |          | I    | Max R: | Sq   |  |
|                        |         |           |        |     |          |      | 0.99   | 87   |  |
| ▼Paramete              | er Est  | imates    |        |     |          |      |        |      |  |
| Term                   |         | Estimate  | Std E  | ror | t Ratio  | Prob | > t    |      |  |
| Intercept              | 31      | 3.02873   | 164.7  | 935 | 1.90     | 0.09 | 993    |      |  |
| Agitation              | -0      | .032988   | 0.016  | 513 | -1.99    | 0.08 | 374    |      |  |
| Seed Amount            | -4      | 0.78237   | 25,80  | 307 | -1.58    | 0.15 | 580    |      |  |
| Temperature            | 0.9     | 5069102   | 4,592  | 396 | 0.11     | 0.91 | 52     |      |  |
| Charge Time            | 6.3     | 7678051   | 8.777  | 356 | 0.77     | 0.46 | 559    |      |  |
| •                      |         |           |        |     |          |      |        |      |  |

(2) Remove the most insignificant term by comparing the p-values. Temperature is eliminated and the model is run again:

| 💙 Summary    | of Fi   | t         |        |      |           |     |        |      |
|--------------|---------|-----------|--------|------|-----------|-----|--------|------|
| RSquare      |         |           | 0.700  | 252  |           |     |        |      |
| RSquare Adj  |         |           | 0.587  | 846  |           |     |        |      |
| Root Mean So | quare E | rror      | 37.84  | 489  |           |     |        |      |
| Mean of Resp | onse    |           | 13     | 84.5 |           |     |        |      |
| Observations | (or Su  | m Wgts)   |        | 12   |           |     |        |      |
| Analysis     | of Va   | riance    |        |      |           |     |        |      |
| Source       | DF S    | Sum of Sq | uares  | Меа  | n Square  |     | F Rati | 0    |
| Model        | 3       | 2676      | 7.116  |      | 8922.37   |     | 6.229  | 7    |
| Error        | 8       | 1145      | 7.884  |      | 1432.24   | P   | rob >  | F    |
| C. Total     | 11      | 3822      | 5.000  |      |           | 0   | .0173  | *    |
| Lack Of F    | it      |           |        |      |           |     |        |      |
| Source       | DF      | Sum of    | Square | s M  | lean Squa | are | FR     | atio |
| Lack Of Fit  | 6       | 11        | 407.88 | 4    | 1901.     |     | 76.0   | 526  |
| Pure Error   | 2       |           | 50.00  | -    | 25.       | 00  | Prob   | > F  |
| Total Error  | 8       | 11        | 457.88 | 4    |           |     | 0.01   | 30*  |
|              |         |           |        |      |           |     | Max P  | ٩Sq  |
|              |         |           |        |      |           |     | 0.99   | 987  |
| ▼Paramete    | er Est  | imates    |        |      |           |     |        |      |
| Term         | I       | Estimate  | Std E  | rror | t Ratio   | Pro | b> t   |      |
| Intercept    | 32      | 5.80338   | 109.8  | 334  | 2.97      | 0.0 | )180*  |      |
| Agitation    |         | .032151   | 0.013  |      | -2.32     |     | )487*  |      |
| Seed Amount  |         | 1.53415   | 23.3   |      | -1.78     |     | 125    |      |
| Charge Time  | 6.5     | 5187692   | 7.941  | 494  | 0.82      | 0.4 | 355    |      |

(3) Once again, remove the most insignificant term, Change Time. Run the model again:

| Summary      | OT HI    |          |        |      |          |     |          |
|--------------|----------|----------|--------|------|----------|-----|----------|
| RSquare      |          |          | 0.675  | 006  |          |     |          |
| RSquare Adj  |          |          | 0.602  | 785  |          |     |          |
| Root Mean Se | quare Er | ror      | 37.15  | 271  |          |     |          |
| Mean of Resp | onse     |          | 13     | 34.5 |          |     |          |
| Observations | (or Sum  | i Wgts)  |        | 12   |          |     |          |
| Analysis     | of Var   | iance    |        |      |          |     |          |
| Source       | DF S     | um of Sq | juares | Mea  | n Square | !   | F Ratio  |
| Model        | 2        | 2580     | 2.085  |      | 12901.0  | I   | 9.3464   |
| Error        | 9        | 1242     | 2.915  |      | 1380.3   | P   | rob > F  |
| C. Total     | 11       | 3822     | 5.000  |      |          | 0   | 1.0064*  |
| Lack Of F    | it       |          |        |      |          |     |          |
| Source       | DF       | Sum of   | Square | es M | lean Squ | are | F Ratio  |
| Lack Of Fit  | 4        | 8        | 728.41 | 5    | 2182     | 10  | 2,9532   |
| Pure Error   | 5        | 3        | 694.50 | 0    | 738.     | 90  | Prob > F |
| Total Error  | 9        | 12       | 422.91 | 5    |          |     | 0.1330   |
|              |          |          |        |      |          |     | Max RSq  |
|              |          |          |        |      |          |     | 0.9033   |
| Paramete     | er Esti  | mates    | ;      |      |          |     |          |
| Term         | E        | stimate  | Std E  | rror | t Ratio  | Pro | b> t     |
| Intercept    | 390      | .22516   | 75.43  | 199  | 5.17     |     | )006*    |
| Agitation    | -0.      | 025807   | 0.01   | 127  | -2.29    | 0.0 | )478*    |
| Seed Amount  | -50      | .70497   | 20.07  | 366  | -2.53    | 0.0 | )325*    |
|              |          |          |        |      |          |     |          |

Both the Agitation and Seed Amount are significant at .05 level. The result regression equation is:

Filtration Time= 390.22516 -.025807 Agitation - 50.70497 Seed Amount

By comparing the sign of the coefficient, the filtration time would be minimized when Agitation is set at its maximum value of 4000 and Seed Amount at 5. At these values the filtration time is 33.47231

5. A study was launched to determine the effect of several factors on the %Dissolution after 60 minutes of a new product from the Tabletting machine in Scenario 2. The following data were obtained:

| Expt   | Speed | Fill   | Pressure | Blade | Punch    | Powder  | %    |
|--------|-------|--------|----------|-------|----------|---------|------|
| Number | (Rpm) | Weight | (Ton)    | Speed | Distance | Flow    | Diss |
|        |       | (kg)   |          | (rpm) | (mm)     | (kg/hr) |      |
| 1      | 1000  | 100    | 1        | 2000  | 1        | 10      | 50   |
| 2      | 1205  | 110    | .90      | 2010  | .55      | .99     | 77   |
| 3      | 770   | 115    | .91      | 2020  | .48      | .98     | 38   |
| 4      | 750   | 118    | .92      | 2030  | 1.85     | .97     | 83   |
| 5      | 1210  | 120    | .93      | 2040  | 2.05     | .98     | 95   |
| 6      | 820   | 118    | .94      | 2050  | .5       | .99     | 40   |
| 7      | 800   | 115    | .95      | 2060  | 1.9      | .95     | 80   |
| 8      | 1185  | 110    | .96      | 2070  | 2.1      | .98     | 97   |
| 9      | 1200  | 119    | 1.1      | 2080  | .54      | .99     | 75   |
| 10     | 990   | 105    | .97      | 1995  | 1.01     | 10.1    | 55   |
| 11     | 1185  | 95     | 1.4      | 1990  | .52      | 10.2    | 75   |
| 12     | 760   | 85     | 1.5      | 1980  | 2.0      | 10.3    | 69   |
| 13     | 777   | 88     | 1.6      | 1970  | 1.95     | 10.2    | 75   |
| 14     | 1190  | 81     | 1.5      | 1960  | .48      | 10.5    | 80   |
| 15     | 1205  | 105    | 1.3      | 1950  | 2.1      | 10.1    | 98   |
| 16     | 775   | 107    | .95      | 1940  | .52      | 10.6    | 35   |
| 17     | 810   | 75     | 1.2      | 1930  | 2.06     | 10.2    | 60   |
| 18     | 740   | 77     | .97      | 1920  | .47      | 10.1    | 30   |
| 19     | 1010  | 95     | 1.03     | 2010  | .97      | 9.9     | 48   |

(1) Determine the extent of correlation between the various factors.

(2) Build a regression model relating the %Dissolution to the factors.

i)Use Standard Regression

ii)Use Stepwise Regression

iii) Why are results in ii) different than in i)

Solution: (1)

(a) To acquire the correlation between the factors, choose "Multivariate" from "Multivariate Method" in "Analyze":

| 🕴 JMP - JMP soluti                    | ion for #5            |              |                      |                   |                |          |             |              |          |
|---------------------------------------|-----------------------|--------------|----------------------|-------------------|----------------|----------|-------------|--------------|----------|
| File Edit Tables Rov                  | ws Cols DOE           | Analyze Grap | h Tools Vie          | w Window          | Help           |          |             |              |          |
| 🖹 🗅 🚅 🗟 🔲                             | a X 🖻 🖻               |              | <b>5. 46</b> + 400 , | ц <sub>р</sub> р. | <b>+ ⋒ =</b> ∠ |          | roblem3     |              | <b>~</b> |
|                                       |                       |              |                      |                   |                |          | i obienio   |              |          |
| 🛗 JMP solution fo                     | r #5                  |              |                      |                   |                |          |             |              |          |
| ▼problem3                             | <ul> <li>€</li> </ul> |              |                      |                   |                | Punch    |             |              | A        |
| · · · · · · · · · · · · · · · · · · · | •                     | Speed        | Fill Weight          | Pressure          | Blade Speed    | Distance | Powder Flow | %Dissolution |          |
|                                       |                       | 1000         | 100                  | 1                 | 2000           | 1        | 10          | 50           |          |
|                                       | 2                     | 1205         | 110                  | 0.9               | 2010           | 0.55     | 0.99        | 77           |          |
|                                       | 3                     | 770          | 115                  | 0.91              | 2020           | 0.48     | 0.98        | 38           |          |
|                                       | 4                     | 750          | 118                  | 0.92              | 2030           | 1.85     | 0.97        | 83           |          |
|                                       | 5                     | 1210         | 120                  | 0.93              | 2040           | 2.05     | 0.98        | 95           |          |
| 0.0.1 (210)                           |                       | 820          | 118                  | 0.94              | 2050           | 0.5      | 0.99        | 40           |          |
| Columns (7/0)                         |                       | 800          | 115                  | 0.95              | 2060           | 1.9      | 0.95        | 80           |          |
| 🚄 Speed<br>🚄 Fill Weight              | 8                     | 1185         | 110                  | 0.96              | 2070           | 2.1      | 0.98        | 97           |          |
| Pressure                              | 9                     | 1200         | 119                  | 1.1               | 2080           | 0.54     | 0.99        | 75           |          |
| A Blade Speed                         | 10                    | 990          | 105                  | 0.97              | 1995           | 1.01     | 10.1        | 55           |          |
| A Punch Distance                      | 11                    | 1185         | 95                   | 1.4               | 1990           | 0.52     | 10.2        | 75           |          |
| 🚄 Powder Flow                         | 12                    | 760          | 85                   | 1.5               | 1980           | 2        | 10.3        | 69           |          |
| 🚄 %Dissolution                        | 13                    | 777          | 88                   | 1.6               | 1970           | 1.95     | 10.2        | 75           |          |
|                                       | 14                    | 1190         | 81                   | 1.5               | 1960           | 0.48     | 10.5        | 80           |          |
|                                       |                       | 1205         | 105                  | 1.3               | 1950           | 2.1      | 10.1        | 98           |          |
|                                       | 16                    | 775          | 107                  | 0.95              | 1940           | 0.52     | 10.6        | 35           |          |
|                                       | 17                    | 810          | 75                   | 1.2               | 1930           | 2.06     | 10.2        | 60           |          |
|                                       | 18                    | 740          | 77                   | 0.97              | 1920           | 0.47     | 10.1        | 30           |          |
|                                       | 19                    | 1010         | 95                   | 1.03              | 2010           | 0.97     | 9.9         | 48           |          |
| ■Rows                                 |                       |              |                      |                   |                |          |             |              |          |
| All rows 19                           |                       |              |                      |                   |                |          |             |              |          |
| Selected 19                           |                       |              |                      |                   |                |          |             |              |          |
| Excluded 0                            |                       |              |                      |                   |                |          |             |              |          |
| Hidden 0                              |                       |              |                      |                   |                |          |             |              |          |
| Labelled 0                            |                       |              |                      |                   |                |          |             |              |          |
|                                       |                       |              |                      |                   |                |          |             |              |          |
|                                       |                       |              |                      |                   |                |          |             |              |          |
|                                       |                       |              |                      |                   |                |          |             |              | <b></b>  |
|                                       | 4                     |              |                      |                   |                |          |             |              |          |

## (b) Choose all the factors in "Y, Columns":

| 🗟 Report: Multivariate and C                                                                                                                                | Correlation | s                                                                                                                                                                                  |                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Pairwise and higher relationships amo<br>Select Columns<br>Speed<br>Fill Weight<br>Pressure<br>Blade Speed<br>Punch Distance<br>Powder Flow<br>%Dissolution | -           | of columns<br>d Columns into Roles<br>Speed<br>Fill Weight<br>Pressure<br>Blade Speed<br>Punch Distance<br>Powder Flow<br>optional Numeric<br>optional Numeric<br>optional Numeric | Action<br>OK<br>Cancel<br>Remove<br>Recall<br>Help |

## (c) Click "OK":

| 🕈 🛡 Sc                               | atterplot N           | /latrix     |                       |                    |                   |                      |
|--------------------------------------|-----------------------|-------------|-----------------------|--------------------|-------------------|----------------------|
| 1200 -                               |                       | r=0.2027    | r≖0.0761.             | r=0.2714 .         | r⊋-0.0715 💂       | r⊫-0.1135 🖕          |
| 1000 -                               | Speed                 | ··.         | -                     | -                  | •                 | •                    |
| 800 -                                |                       | 1.4.4       | ą <sup>1</sup>        | · · · ·            | ÷                 | !;                   |
| 100 -<br>80 -                        | r=0.2027              | Fill Weight | r=-0.6238             | r=0.7851           | r≕-0.0179         | r≓-0.8001            |
| 1.3<br>1.3<br>1.1<br>0.9             | r=0.0761              | r=-0.6238   | Pressure              | r=-0:4207          | r=0.2034          | r=0.5899 :           |
| 2100 -<br>2050 -<br>2000 -<br>1950 - | r=0.2714              | r=0.7851    | r <del>⇒</del> 0.4207 | Blade Speed        | r=0.0645          | r⊫-0.8285            |
| 2-                                   | r <b>≠-</b> 0.0715    | r=-0.0179   | r <b>≕</b> D.2034     | r=0.0645           |                   | r <b>⊨</b> -0.0463 ≀ |
| 1.5-<br>1-<br>0.5-                   |                       |             | <br>                  | <br>               | Punch<br>Distance |                      |
| ے<br>– 10                            | ra=-0.1 <b>1</b> 35 • | r=~9.8001   | r <b>≕Q</b> .5899 • • | r <b>∞•0•6</b> 285 | r≖-0.0463 ~       |                      |
| 6-                                   |                       |             |                       |                    |                   | Powder Flow          |
| 2-                                   |                       |             | <b>_</b> .            |                    |                   |                      |
|                                      | 8001000 130           | 080 100 120 | .91.1 1.4 1.          | 71950 2050         | .5 1 1.5 2        | 246810               |

Note the following pair of factors are highly correlated: Fill Weight and Blade Speed. Fill Weight and Powder Flow. Blade Speed and Powder Flow

Fill Weight and Pressure

(2)

#### i. Standard Regression:

| ii Stand              |          |             |           |         |          |  |  |  |  |
|-----------------------|----------|-------------|-----------|---------|----------|--|--|--|--|
| ♥ Summai              | ry of l  | Fit         |           |         |          |  |  |  |  |
| RSquare               |          | (           | ).920888  |         |          |  |  |  |  |
| RSquare Ac            | dj 🛛     | (           | ).881331  |         |          |  |  |  |  |
| Root Mean             | Square   | Error 7     | 7.411549  |         |          |  |  |  |  |
| Mean of Re            | sponse   | : 6         | 6.31579   |         |          |  |  |  |  |
| Observatio            | ns (or S | ium Wgts)   | 19        |         |          |  |  |  |  |
| Analysi:              | s of V   | 'ariance    |           |         |          |  |  |  |  |
| Source                | DF       | Sum of Squa | ares Mean | Square  | F Ratio  |  |  |  |  |
| Model                 | 6        | 7672.9      | 325 :     | 1278.82 | 23.2805  |  |  |  |  |
| Error                 | 12       | 659.1       | 727       | 54.93   | Prob > F |  |  |  |  |
| C. Total              | 18       | 8332.1      | 053       |         | <.0001*  |  |  |  |  |
| ▼ Parameter Estimates |          |             |           |         |          |  |  |  |  |
| Term                  |          | Estimate    | Std Error | t Ratio | Prob> t  |  |  |  |  |
| Intercept             |          | 113.97311   | 142.6448  | 0.80    | 0.4398   |  |  |  |  |
| Speed                 |          | 0.0626565   | 0.009696  | 6.46    | <.0001*  |  |  |  |  |
| Fill Weight           |          | 0.2232583   | 0.231023  | 0.97    | 0.3529   |  |  |  |  |
| Pressure              |          | 38.856114   | 10.82738  | 3.59    | 0.0037*  |  |  |  |  |
| Blade Spee            | d        | -0.090549   | 0.075411  | -1.20   | 0.2530   |  |  |  |  |
| Punch Dista           | ance     | 17.220037   | 2.584938  | 6.66    | <.0001*  |  |  |  |  |
| Powder Flo            | W        | -2.188226   | 0.794755  | -2.75   | 0.0175*  |  |  |  |  |
|                       |          |             |           |         |          |  |  |  |  |

Based on the analysis, Fill Weight and Blade Speed are unimportant. This is not surprising since they are correlated with Powder Flow in Part (1).

| Problem3         Fk Y by X         Matched Pairs           Problem3         Fk Model         Punch         Punch         Distance         Powder Flow         %Dissolution           * Columns (7/0)         75         118         0.9         2030         1.85         0.99         77           * Columns (7/0)         75         118         0.92         2030         1.85         0.97         83           * Columns (7/0)         76         820         118         0.94         2050         0.5         0.99         40           * Speed         820         118         0.94         2050         0.5         0.99         40           * Fill Weight         9         1200         119         1.1         2080         0.5         0.99         40           * Pressure         1185         110         0.96         2070         2.1         0.98         97           * Pressure         1185         110         0.96         2070         2.1         0.98         97           * Powder Flow         9         1200         119         1.1         2080         0.54         0.99         75           * Powder Flow         113         777 <td< th=""><th>) 🗅 😅 🖪 🗐 🎒 👗 🛙</th><th>🚡 🛒 📴 Distribution</th><th></th><th>0.</th><th>+ 🛛 ≒ 4</th><th></th><th>oroblem3</th><th>~</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) 🗅 😅 🖪 🗐 🎒 👗 🛙 | 🚡 🛒 📴 Distribution |                                                                                                                 | 0.   | + 🛛 ≒ 4     |             | oroblem3                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|-----------------------------------------------------------------------------------------------------------------|------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Problem3         Price         Fit Model         Punch<br>Modeling<br>Multivariate Methods<br>survival and Reliability         Punch<br>Distance         Powder Flow         %Dissolution           * Columns (7/0)         1         10         50         1         100         50           * Columns (7/0)         3         750         118         0.92         2030         1.65         0.97         83           * Columns (7/0)         5         6         20         118         0.94         2050         0.5         0.99         40           * Speed<br>Pli Weight<br>Pressure<br>Blade Speed         1185         110         0.96         2070         2.1         0.98         97           * Blade Speed         1185         110         0.96         2070         2.1         0.98         97           * Blade Speed         1185         110         0.96         2070         2.1         0.98         97           * Punch Distance<br>Powder Flow         1185         119         0.97         1.99         1.01         10.1         55           * Powder Flow         13         777         88         1.6         1970         1.95         10.2         75           * Powder Flow         17         10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                    |                                                                                                                 |      |             |             | <u>.</u>                                                                                                        | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Columns (7/0)         Modeling<br>Multivariate Methods<br>Survival and Reliability         net<br>(1)         Distance<br>2000         Powder Flow         %Dissolution           • Columns (7/0)         1         10         50           • Columns (7/0)         5         1210         120         0.93         22030         1.85         0.99         77           • Columns (7/0)         6         820         118         0.92         2030         1.85         0.97         83           • Fill Weight<br>Pressure<br>Blade Speed         7         800         115         0.94         2050         0.5         0.99         40           • Pressure<br>Blade Speed         1185         110         0.96         2070         2.1         0.98         97           • Pressure<br>Blade Speed         11         1185         95         1.1         2080         0.54         0.99         75           • Pressure<br>Powder Flow         10         990         105         0.97         1995         1.01         10.1         55           • Powder Flow         11         1185         95         1.4         1990         0.52         10.2         75           • Powder Flow         11         1185         95         1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | problem3        | 🔜 🔛 Matched Pairs  | 5                                                                                                               |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Columns (7/0)         Modeling         Modeling         Multivariate Methods         Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | problem3        | 🔽 💷 Fit Model      |                                                                                                                 |      |             | Punch       | 15.16                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Multivariate Methods         1         1         2000         1         10         50           Survival and Reliability         0,9         2010         0.055         0.99         77           0,91         2020         0.48         0.99         38           1         750         118         0.92         2030         1.85         0.99         38           1         750         118         0.92         2030         1.85         0.99         38           5         1210         120         0.93         2040         2.05         0.98         95           6         820         118         0.94         2050         0.5         0.99         40           Speed         8         1185         110         0.96         2070         2.1         0.98         97           Pressure         9         1200         119         1.1         2080         0.54         0.99         75           Pressure         10         990         105         0.97         1995         1.01         10.1         55           Powder Filower         11         118         95         1.5         1980         2         10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Modeling           |                                                                                                                 | ure  | Blade Speed | Distance    | Powder Flow                                                                                                     | %Dissolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| Columns (7/0)         3         Survival and Reliability         0.99         2010         0.055         0.99         77           • Columns (7/0)         4         750         118         0.92         2030         1.85         0.97         83           • Columns (7/0)         6         820         118         0.94         2050         0.5         0.99         40           • Speed         6         820         118         0.95         2060         1.9         0.95         80           • Fill Weight         9         1200         119         1.1         2080         0.54         0.99         75           • Pressure         118         195         1.4         1990         0.52         10.2         75           • Powder flow         11         1185         95         1.4         1990         0.52         10.2         75           • Powder flow         12         760         85         1.5         1980         2         10.3         69           • * Dissolution         13         777         88         1.6         1970         1.95         10.2         75           • Powder flow         15         1205         10.3 <td></td> <td></td> <td></td> <td>1</td> <td>2000</td> <td></td> <td>10</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                    |                                                                                                                 | 1    | 2000        |             | 10                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Columns (7/0)         Columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | - Z                |                                                                                                                 |      | 2010        | 0.55        | 5 0.99                                                                                                          | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| Columns (7/0)         5         1210         120         0.93         2040         2.05         0.98         95           Speed         6         820         118         0.94         2050         0.5         0.99         40           Speed         7         800         115         0.95         2060         1.9         0.95         80           Fill Weight<br>Pressure<br>Blade Speed         91         200         119         1.1         2080         0.54         0.99         75           Punch Distance<br>Powder Flow         990         105         0.97         1995         1.01         10.1         55           900         13         777         88         1.6         1970         1.95         10.2         75           900         13         777         88         1.6         1970         1.95         10.2         75           14         1190         81         1.5         1960         0.48         10.5         80           16         775         107         0.95         1940         0.52         10.6         35           17         810         75         1.2         1930         2.06         10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                    |                                                                                                                 |      |             | Territori - | - Christen                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| Columns (7/0)         6         820         118         0.94         2050         0.5         0.99         40           Speed<br>Fill Weight<br>Pressure<br>Blade Speed<br>Punch Distance<br>Powder Flow         3         1185         110         0.96         2070         2.1         0.98         97           90         105         0.97         1995         1.01         10.1         55           90         105         0.97         1995         1.01         10.1         55           Powder Flow         12         760         85         1.5         1980         2         10.3         69           % Dissolution         13         777         88         1.6         1970         1.95         10.2         75           14         1190         81         1.5         1960         0.48         10.5         80           16         775         107         0.95         1940         0.52         10.6         35           17         810         75         1.2         1930         2.06         10.2         60           18         740         77         0.97         1.920         0.47         10.1         30           19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                    | 10.000                                                                                                          |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| * Columns (7/0)         7         800         115         0.95         2060         1.9         0.95         80           Speed<br>Fill Weight<br>Pressure<br>Blade Speed<br>Punch Distance<br>Powder Flow<br>%Dissolution         1105         110         0.96         2070         2.1         0.98         97           990         100         119         1.1         2080         0.54         0.99         75           Blade Speed<br>Punch Distance<br>Powder Flow         11         1185         95         1.4         1990         0.52         10.2         75           11         1185         95         1.4         1990         0.52         10.2         75           Ponch Distance<br>Powder Flow         12         760         85         1.5         1980         2         10.3         69           114         1190         81         1.5         1960         0.48         10.5         80           116         775         107         0.95         1940         0.52         10.6         35           117         810         75         1.2         1930         2.06         10.2         60           19         1010         95         1.03         2010         0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                    | in the second |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Speed         8         116         0.73         2000         1.19         0.73         600           Fill Weight<br>Pressure<br>Blade Speed<br>Punch Distance<br>Powder Flow<br>%Dissolution         9         1200         119         1.1         2080         0.54         0.99         75           Pide Speed<br>Punch Distance<br>Powder Flow<br>%Dissolution         1185         9100         0.97         1995         1.01         10.1         55           11         1185         95         1.4         1990         0.52         10.2         75           Powder Flow<br>%Dissolution         13         777         88         1.6         1970         1.95         10.2         75           14         1190         81         1.5         1960         2.1         10.1         98           15         1205         105         1.3         1950         2.1         10.1         98           16         775         107         0.95         1940         0.52         10.6         35           19         1010         95         1.03         2010         0.97         9.9         48           * Rows         19         1010         95         1.03         2010         0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Columna (7/0)   |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Fill Weight<br>Pressure<br>Blade Speed<br>Punch Distance<br>Powder Flow         9         1103         1103         0.796         2.21         0.790         977           Plack Distance<br>Powder Flow         9         1200         119         1.11         2080         0.54         0.99         75           Powder Flow         11         1185         95         1.4         1990         0.52         10.2         75           Solissolution         12         760         85         1.5         1980         2         10.3         69           * Obissolution         13         777         88         1.6         1970         1.95         10.2         75           14         1190         81         1.5         1960         0.48         10.5         80           16         775         107         0.95         1940         0.52         10.6         35           17         810         75         1.2         1930         2.06         10.2         60           18         740         77         0.97         1920         0.47         10.1         30           19         1010         95         1.03         2010         0.97         9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Pressure<br>Blade Speed<br>Punch Distance<br>Powder Flow         1200         119         1.1         2080         0.054         0.099         75           Punch Distance<br>Powder Flow         10         990         105         0.97         1995         1.01         10.1         55           Powder Flow         12         760         85         1.5         1980         2         10.3         69           13         777         88         1.6         1970         1.95         10.2         75           14         1190         81         1.5         1960         0.48         10.5         80           15         1205         105         1.3         1950         2.1         10.1         98           16         775         107         0.95         1940         0.52         10.6         35           17         810         75         1.2         1930         2.06         10.2         60           18         740         77         0.97         1.920         0.47         10.1         30           19         1010         95         1.03         2010         0.97         9.9         48           r Rows         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                    |                                                                                                                 |      |             |             | in the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Blade Speed<br>Princh Distance         10         990         105         0.97         1995         1.01         10.1         55           Powder Distance         11         1185         95         1.4         1990         0.52         10.2         75           Powder Tow         12         760         85         1.5         1980         2         10.3         69           *&Dissolution         13         777         88         1.6         1970         1.95         10.2         75           14         1190         81         1.5         1960         0.48         10.5         80           15         1205         105         1.3         1950         2.1         10.1         98           16         775         107         0.95         1940         0.52         10.6         35           17         810         75         1.2         1930         2.06         10.2         60           18         740         77         0.97         1920         0.47         10.1         30           19         1010         95         1.03         2010         0.97         9.9         48           If rows <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Powder Towards         12         760         85         1.5         1980         2         10.3         69           Powder Towards         13         777         88         1.6         1970         1.95         10.2         75           14         1190         81         1.5         1960         0.48         10.5         80           15         1205         105         1.3         1950         2.1         10.1         98           16         775         107         0.95         1940         0.52         10.6         35           17         810         75         1.2         1930         2.06         10.2         60           18         740         77         0.97         1920         0.47         10.1         30           19         1010         95         1.03         2010         0.97         9.9         48           * Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                    |                                                                                                                 |      | 1           |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| *Abisolution         13         777         88         1.6         1970         1.95         1.0.2         75           *Abisolution         14         1190         81         1.5         1960         0.48         10.5         80           15         1205         105         1.3         1950         2.1         10.1         98           16         775         107         0.95         1940         0.52         10.6         35           17         810         75         1.2         1930         2.06         10.2         60           18         740         77         0.97         1920         0.47         10.1         30           19         1010         95         1.03         2010         0.97         9.9         48           * Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 1997               | 1000                                                                                                            |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Rows         Image: scale of the state |                 |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Rows         Image: space sp | %Dissolution    | 2 2 2 C            |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Rows         Image: Constraint of the system of the sy |                 |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ] |
| 17         810         75         1.2         1930         2.06         10.2         60           18         740         77         0.97         1920         0.47         10.1         30           19         1010         95         1.03         2010         0.97         9.9         48           * Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 18         740         77         0.97         1920         0.47         10.1         30           19         1010         95         1.03         2010         0.97         9.9         48           r Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 100 C              |                                                                                                                 |      |             |             |                                                                                                                 | tertaitet in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 19         1010         95         1.03         2010         0.97         9.9         48           FRows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | 2-7 C              |                                                                                                                 |      |             | S. S. S. S. |                                                                                                                 | and the second sec |   |
| Rows         Image: Constraint of the second se |                 |                    |                                                                                                                 |      |             |             |                                                                                                                 | (10.100 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| II rows         19         III rows         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | 19 1010            | 95                                                                                                              | 1.03 | 2010        | 0.97        | 9.9                                                                                                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| ielected 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rows            |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Excluded 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| iidden 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                    |                                                                                                                 |      |             |             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                    |                                                                                                                 |      |             |             | -                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Delled U        |                    |                                                                                                                 |      |             |             | -                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |

# ii) Stepwise Regression(a) Choose "Fit Model" in "Analyze":

| problem3                                                                                                                                                                                                                |                         |                                       |      |              |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|------|--------------|--|
| 🔝 Fit Model                                                                                                                                                                                                             |                         |                                       | Flow | %Dissolution |  |
| Model Specificat                                                                                                                                                                                                        | ion                     |                                       | 10   | 50           |  |
| Select Columns                                                                                                                                                                                                          | Pick Role Variables     | onality: Standard Least Square        |      | 77           |  |
| Speed                                                                                                                                                                                                                   | Y required              | Stepwise                              | 55   | 38           |  |
| Fill Weight                                                                                                                                                                                                             | optional                | <ul> <li>Second and second</li> </ul> |      | 83           |  |
| Pressure                                                                                                                                                                                                                | Help                    | Manova                                |      | 95           |  |
| Blade Speed                                                                                                                                                                                                             | Weight optional Numeric | Loglinear Variance                    |      | 40           |  |
| Punch Distance                                                                                                                                                                                                          | Ren                     | Nominal Logistic                      |      | 80           |  |
| M M Dissolution                                                                                                                                                                                                         | Freq optional Numeric   | Ordinal Logistic                      |      | 97           |  |
| 100 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                 | By optional             | Orumai Eugistic                       |      | 75           |  |
|                                                                                                                                                                                                                         |                         | Proportional Hazard                   |      | 55           |  |
| Or     Punch Distance     Popular Toptional Numeric       Sp     Powder Flow     Freq     optional Numeric       Frid     %Dissolution     By     optional       BL     Po     Construct Model Effects       Po     Add |                         | Parametric Survival                   |      | 75           |  |
| d                                                                                                                                                                                                                       | Add                     |                                       |      | 69           |  |
| 6                                                                                                                                                                                                                       |                         | Generalized Linear Mo                 |      | 75           |  |
|                                                                                                                                                                                                                         | Cross                   |                                       | 10.5 |              |  |
|                                                                                                                                                                                                                         | Nest                    |                                       | 10.1 | 98           |  |
|                                                                                                                                                                                                                         |                         |                                       | 10.6 | 35           |  |
|                                                                                                                                                                                                                         | Macros 🗸                |                                       | 10.2 | 60           |  |
|                                                                                                                                                                                                                         | Degree 2                |                                       | 10.1 | 30           |  |
|                                                                                                                                                                                                                         | Attributes 💌            |                                       | 9.9  | 48           |  |
|                                                                                                                                                                                                                         | Transform 🐨             |                                       |      |              |  |
|                                                                                                                                                                                                                         |                         |                                       |      |              |  |
| 4                                                                                                                                                                                                                       | No Intercept            |                                       | -    |              |  |
| en O                                                                                                                                                                                                                    |                         |                                       |      |              |  |
| en O                                                                                                                                                                                                                    |                         |                                       | 12   |              |  |

## (b) Select "Stepwise" in "Personality":

## (c) Fit in the Response and Factors:

| JRP | Fit Model           |                                           | X |
|-----|---------------------|-------------------------------------------|---|
| •   | Model Specification | n                                         |   |
|     | Select Columns      | Pick Role Variables Personality: Stepwise | ~ |
|     |                     | Y A%Dissolution                           |   |
|     | Fill Weight         |                                           |   |
|     | ABlade Speed        | Weight optional Numeric Run Model         |   |
|     | Punch Distance      | Remove                                    |   |
|     | A %Dissolution      | Freq optional Numeric                     |   |
|     |                     | By optional                               |   |
|     |                     | Construct Model Effects                   |   |
|     |                     | Add Speed                                 |   |
|     |                     | Fill Weight                               |   |
|     |                     | Cross Pressure<br>Blade Speed             |   |
|     |                     | Nest Punch Distance                       |   |
|     |                     | Macros   Powder Flow                      |   |
|     |                     | Degree 2                                  |   |
|     |                     | Attributes 💌                              |   |
|     | -                   | Transform 💌                               |   |
|     |                     | No Intercept                              |   |
|     |                     |                                           |   |

## (d) Hit "Run Model":

| 📓 problem3- Fit Stepwise                                        |              |     |           |           |          |   |  |  |  |
|-----------------------------------------------------------------|--------------|-----|-----------|-----------|----------|---|--|--|--|
| 👻 🗢 Stepwise Fit                                                |              |     |           |           |          | - |  |  |  |
| Response: %Dissolution                                          |              |     |           |           |          |   |  |  |  |
| Stepwise Regression Control                                     |              |     |           |           |          |   |  |  |  |
| Prob to Enter 0.250 Enter All<br>Prob to Leave 0.100 Remove All |              |     |           |           |          |   |  |  |  |
| Go Stop Step Make                                               | e Model      |     |           |           |          |   |  |  |  |
| ♥ Current Estimates                                             |              |     |           |           |          |   |  |  |  |
| SSE DFE                                                         | MSE RSquare  | RSc | quare Adj | Ср        | AIC      |   |  |  |  |
| 8332.1053 18 462.8                                              | 39474 0.0000 |     | 0.0000    | 134.68294 | 117.5852 |   |  |  |  |
| Lock Entered Parameter                                          | Estimate     | nDF | SS        | "F Ratio" | "Prob>F" |   |  |  |  |
| 🗹 🗹 Intercept                                                   | 66.3157895   | 1   | 0         | 0.000     | 1.0000   |   |  |  |  |
| Speed                                                           | 0            | 1   | 2975.048  | 9.441     | 0.0069   |   |  |  |  |
| 🗌 🔲 🛛 Fill Weight                                               | 0            | 1   | 407.3309  | 0.874     | 0.3630   |   |  |  |  |
| Pressure                                                        | 0            | 1   | 698.1432  | 1.555     | 0.2294   |   |  |  |  |
| 🗌 🔲 🛛 Blade Speed                                               | 0            | 1   | 910.2736  | 2.085     | 0.1669   |   |  |  |  |
| Punch Distance                                                  | · –          | 1   | 3226.701  |           | 0.0044   |   |  |  |  |
| Powder Flow                                                     | 0            | 1   | 635.8756  | 1.405     | 0.2523   |   |  |  |  |
| ✓ Step History                                                  |              |     |           |           |          |   |  |  |  |

(e) Now we may choose either forward selection or backward selection.

To do forward selection, input .05 as the  $\alpha$  Entry level and Exit level. Pick "Forward" in "Direction". Hit "Go":

| 🔝 prob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lem3                        | - Fit Stepwise | 9       |         |      |           |           |          |   | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|---------|---------|------|-----------|-----------|----------|---|---|
| 🔶 🖻 Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | epwis                       | se Fit         |         |         |      |           |           |          |   |   |
| Respons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | se: %D                      | Dissolution    |         |         |      |           |           |          |   |   |
| 🔷 🕈 Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stepwise Regression Control |                |         |         |      |           |           |          |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to En                       |                | Enter   | All     |      |           |           |          |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to Lea                      |                | Remo    |         |      |           |           |          |   |   |
| Direc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion: F                     | Forward 😽      | Remo    |         |      |           |           |          |   |   |
| Go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sto                         | p Step Mak     | e Model | )       |      |           |           |          |   |   |
| 🔶 Cui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rrent                       | Estimates      |         |         |      |           |           |          |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSE                         | E DFE          | MSE     | RSquare | RS   | quare Adj | Ср        | AIC      |   |   |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2307                      | 7 16 103.      | 32692   | 0.8016  | i    | 0.7768    | 17.096464 | 90.85491 |   |   |
| Lock E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Entere                      | d Parameter    | E       | stimate | nDF  | SS        | "F Ratio" | "Prob>F" |   |   |
| Image: A start and a start | 1                           | Intercept      | -26.1   | 140878  | 1    | 0         | 0.000     | 1.0000   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\checkmark$                | Speed          | 0.070   | 029302  | 1    | 3452.173  | 33.410    | 0.0000   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Fill Weight    |         | 0       | 1    | 90.78878  | 0.872     |          |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Pressure       |         | 0       | 1    | 95.57831  | 0.920     |          |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Blade Speed    |         | 0       | 1    | 114.3366  |           |          |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Punch Distance | e 20.1  | 154033  | 1    |           |           |          |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Powder Flow    |         | 0       | 1    | 250.5261  | 2.679     | 0.1225   |   |   |
| 🔷 🕈 Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ep His                      | story          |         |         |      |           |           |          |   |   |
| Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | р                           | Parameter      | Action  | "Sig Pi | rob" | Seq SS    | RSquare   | Ср       | Р |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                           | Punch Distance | Entered | l 0.0   | 044  | 3226.701  | 0.3873    | 77.942   | 2 |   |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                           | Speed          | Entered | l 0.0   | 000  | 3452.173  | 0.8016    | 17.096   | 3 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                |         |         |      |           |           |          |   |   |

Punch Distance and Speed are kept in the final model.

(f) To do backward selection, input .05 as the  $\alpha$  Entry level and Exit level. Pick "Backward" in "Direction". Hit "Enter All" and "Go":

| 📓 problem3- Fit Stepwise                           |        |  |  |  |  |  |  |  |
|----------------------------------------------------|--------|--|--|--|--|--|--|--|
| 👻 💌 Stepwise Fit                                   |        |  |  |  |  |  |  |  |
| Response: %Dissolution                             |        |  |  |  |  |  |  |  |
| ▼ Stepwise Regression Control                      |        |  |  |  |  |  |  |  |
| Prob to Enter 0.050 Enter All                      |        |  |  |  |  |  |  |  |
| Prob to Leave 0.050                                |        |  |  |  |  |  |  |  |
| Direction: Backward 🗸 Remove All                   |        |  |  |  |  |  |  |  |
| Go Stop Step Make Model                            |        |  |  |  |  |  |  |  |
|                                                    |        |  |  |  |  |  |  |  |
| Current Estimates                                  |        |  |  |  |  |  |  |  |
| SSE DFE MSE RSquare RSquare Adj Cp                 | AIC    |  |  |  |  |  |  |  |
|                                                    | 95015  |  |  |  |  |  |  |  |
|                                                    | rob>F" |  |  |  |  |  |  |  |
|                                                    | 1.0000 |  |  |  |  |  |  |  |
|                                                    | 0.0000 |  |  |  |  |  |  |  |
|                                                    | 0.6033 |  |  |  |  |  |  |  |
|                                                    | 0.0038 |  |  |  |  |  |  |  |
| Blade Speed 0 1 44.00445 0.805 (                   | 0.3859 |  |  |  |  |  |  |  |
|                                                    | 0.0000 |  |  |  |  |  |  |  |
| Powder Flow -1.8539565 1 803.1748 14.904 (         | 0.0017 |  |  |  |  |  |  |  |
| ✓ Step History                                     |        |  |  |  |  |  |  |  |
| Step Parameter Action "Sig Prob" Seq SS RSquare C  | рр     |  |  |  |  |  |  |  |
| 1 Fill Weight Removed 0.3529 51.30044 0.9147 5.933 | 96     |  |  |  |  |  |  |  |
| 2 Blade Speed Removed 0.3859 44.00445 0.9094 4.73  | 55     |  |  |  |  |  |  |  |

Speed, Pressure, Punch Distance and Powder Flow are in the final model.

iii) However, the results are different because of the correlations among the factors.

## **Single Factor Experiments**

6. Completely Randomized Design

In a study to determine the effect of roller speed on roller gap in a roller compactor (Scenario 2), five replicates of the Roller Gap in mm were measured at five different values of roll speed (rpm) where the experiments were run in random order. The following data were obtained:

| Roll Speed (rpm) | Roller gap (mm) |    |    |    |    |  |
|------------------|-----------------|----|----|----|----|--|
| 15               | 7               | 7  | 15 | 11 | 9  |  |
| 20               | 12              | 17 | 12 | 18 | 18 |  |
| 25               | 14              | 18 | 18 | 19 | 19 |  |
| 30               | 19              | 25 | 22 | 19 | 23 |  |
| 35               | 7               | 10 | 11 | 15 | 11 |  |

- (1)Does roller speed affect roller gap at the 95% confidence level? Perform an ANOVA.
- (2) Using a multiple range test at 95% confidence which levels are different from one another?
- (3) Find a suitable regression model between roller gap and roll speed if one exists.
- (4) Compare the results of (2) and (3).

Solution:

(1) Choose "Fit Y by X" in "analyze" with Roller gap as Y and Roll speed as X.



Choose "means/Anova" in hot spot aside "Oneway analysis of Roller gap by Roller speed":



| ▼ Analysis of Variance |                       |         |            |             |           |          |  |  |  |  |
|------------------------|-----------------------|---------|------------|-------------|-----------|----------|--|--|--|--|
| Source                 |                       | DF Sum  | of Squares | Mean Square | F Ratio   | Prob > F |  |  |  |  |
| Roll Spe               | eed                   | 4       | 475.76000  | 118.940     | 14.7568   | <.0001*  |  |  |  |  |
| Error                  |                       | 20      | 161.20000  | 8.060       |           |          |  |  |  |  |
| C. Tota                | C. Total 24 636.96000 |         |            |             |           |          |  |  |  |  |
| Means for Oneway Anova |                       |         |            |             |           |          |  |  |  |  |
| Level                  | Number                | Mean    | Std Error  | Lower 95%   | Upper 95% |          |  |  |  |  |
| 15                     | 5                     | 9.8000  | 1.2696     | 7.152       | 12.448    |          |  |  |  |  |
| 20                     | 5                     | 15.4000 | 1.2696     | 12.752      | 18.048    |          |  |  |  |  |
| 25                     | 5                     | 17.6000 | 1.2696     | 14.952      | 20.248    |          |  |  |  |  |
| 30                     | 5                     | 21.6000 | 1.2696     | 18.952      | 24.248    |          |  |  |  |  |
| 35                     | 5                     | 10.8000 | 1.2696     | 8.152       | 13.448    |          |  |  |  |  |

Yes, roller speed affects roller gap at the 95% confidence level since the p value is <.0001.

## (2) Choose "each Pair, Student's t" in "Compare Means":



| ľ | <ul><li>C</li></ul> | omparis    | sons for ea    | ach pair u     | ising Stud     | lent's t      |     |
|---|---------------------|------------|----------------|----------------|----------------|---------------|-----|
|   |                     | t          | Alpha          |                |                |               |     |
|   | 2.0                 | 8596       | 0.05           |                |                |               |     |
|   | Abs(Di              | if)-LSD    |                |                |                |               |     |
|   |                     | 30         | 25             | 20             | 35             | 15            |     |
|   | 30                  | -3.7455    | 0.2545         | 2.4545         | 7.0545         | 8.0545        |     |
|   | 25                  | 0.2545     | -3.7455        | -1.5455        | 3.0545         | 4.0545        |     |
|   | 20                  | 2.4545     | -1.5455        | -3.7455        | 0.8545         | 1.8545        |     |
|   | 35                  | 7.0545     | 3.0545         | 0.8545         | -3.7455        | -2.7455       |     |
|   | 15                  | 8.0545     | 4.0545         | 1.8545         | -2.7455        | -3.7455       |     |
|   |                     |            |                |                |                |               |     |
|   |                     | e values s | how pairs of i | means that a   | are significan | itly differer | nt. |
|   | Level               |            | Mean           |                |                |               |     |
|   | 30                  | A          | 21.600000      |                |                |               |     |
|   | 25                  | В          | 17.600000      |                |                |               |     |
|   | 20                  | В          | 15.400000      |                |                |               |     |
|   | 35                  | C          | 10.800000      |                |                |               |     |
|   | 15                  | C          | 9.800000       |                |                |               |     |
|   | Levels              | not conne  | ected by same  | e letter are s | ignificantly d | lifferent.    |     |
|   | Level               | - Level    | Difference     | Lower CL       | Upper CL       | p-Value       |     |
|   | 30                  | 15         | 11.80000       | 8.05455        |                |               |     |
|   | 30                  | 35         | 10.80000       | 7.05455        | 14.54545       |               |     |
|   | 25                  | 15         | 7.80000        | 4.05455        | 11.54545       |               |     |
|   | 25                  | 35         | 6.80000        | 3.05455        | 10.54545       |               |     |
|   | 30                  | 20         | 6.20000        | 2.45455        |                | 0.0025*       |     |
|   | 20                  | 15         | 5.60000        | 1.85455        |                | 0.0054*       |     |
|   | 20                  | 35         | 4.60000        | 0.85455        |                | 0.0186*       |     |
|   | 30                  | 25         | 4.00000        | 0.25455        |                | 0.0375*       |     |
|   | 25                  | 20         | 2.20000        | -1.54545       | 5.94545        |               |     |
|   | 35                  | 15         | 1.00000        | -2.74545       | 4.74545        | 0.5838        |     |
|   |                     |            |                |                |                |               |     |

By the analysis, Level 30 in Group A is different from level 25 and 20 in group B. Level 25 and 20 in group B are different from 35 and 15 in group C.

(3) Firstly, fit a first order linear model: Let roll speed be X, roller gap be Y  $Y = \beta_0 + \beta_1 X + \epsilon$ 



There is a significant lack of fit at the .05 level. Then try a second order model:

Max RSq 0.7469

Let roll speed be X, roller gap be Y

 $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$ 

Choose "fit model" in "analyze". Then add Roll speed and Roll speed\*Roll speed as factors. (To add Roll speed\*Roll speed, click Roll speed in the added factor area, then click cross, then click Roll speed in the Select Columns.)



There is still a significant lack of fit. Then try a third order model. Let roll speed be X, roller gap be Y

 $\mathbf{Y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{X} + \boldsymbol{\beta}_2 \mathbf{X}^2 + \boldsymbol{\beta}_3 \mathbf{X}^3 + \boldsymbol{\epsilon}$ 

The third order term, Roll speed\* Roll speed\* Roll speed is added the similar way as the second order term Roll speed\* Roll speed.



There is no significant lack of fit. We can conclude a cubic model is adequate to describe the data.

## **Randomized Block Design**

7. A study was conducted to determine effect of Roll Speed (rpm) on ribbon uniformity (dimensionless) in a roller compactor (Scenario 2).. Six different replicates were conducted on six batches of material from a blending operation. The order of selecting the samples was from the blenders were randomized as was the order of running the experiments. The data from this completely randomized block design is shown below:

|             | В    | atch Numbe | er  |     |     |     |
|-------------|------|------------|-----|-----|-----|-----|
| Roll        | 1    | 2          | 3   | 4   | 5   | 6   |
| Speed (rpm) |      |            |     |     |     |     |
| (rpm)       |      |            |     |     |     |     |
| 10          | .78  | .80        | .81 | .75 | .77 | .78 |
| 16          | .85  | .85        | .92 | .86 | .81 | .83 |
| 23          | .93  | .92        | .95 | .89 | .89 | .83 |
| 31          | 1.14 | .97        | .98 | .88 | .86 | .83 |
| 40          | .97  | .86        | .78 | .76 | .76 | .75 |

- (1) Does Roll Speed affect the ribbon uniformity? Is the between batch variation significant?
- (2) Determine the regression equation between roller uniformity and roll speed. Compare the results with a)
- (3) Are the residuals from this experiment normally distributed?

Solution:

(1) In JMP, double click the tab of "Roll speed" and choose the data type as "Character":

| 🔝 Roller Speed   |                  |        |        |
|------------------|------------------|--------|--------|
| Roller Speed' in | Table 'problem5' |        | ОК     |
| Column Name      | Roller Speed     | 🗆 Lock | Cancel |
| Data Type        | Character 🗸      |        | Apply  |
| Modeling Type    | Nominal 💙        |        | Help   |
| Column Propertie | es 🗸             |        |        |
|                  |                  |        |        |

Use "Fit model" in "Analyze" as in the previous problems:



Roll Speed affects the ribbon uniformity at the .05 level since the p value is .0003. There is significant variation between the Batches at the .05 level since the p value is .0074.

(2) Double click the tab of "Roll speed" and choose the data type as "Numeric" and Modeling type as "Continuous":

| 🔝 Roll Speed                                                                                                                                                                     |        |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|
| 'Roll Speed' in Table 'problem5'         Column Name       Roll Speed         Data Type       Numeric         Modeling Type       Continuous         Format       Best < Width 2 | 🗆 Lock | OK<br>Cancel<br>Apply<br>Help |
|                                                                                                                                                                                  |        |                               |

Use "Fit Y by X" in "Analyze" as in the previous problems:



| Joannary                             | of Fit                                         |                                                     |                                                    |                               |                                                         |
|--------------------------------------|------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-------------------------------|---------------------------------------------------------|
| RSquare 0.042576                     |                                                |                                                     |                                                    | 6                             |                                                         |
| RSquare Adj                          |                                                |                                                     | 0.00838                                            | 3                             |                                                         |
| Root Mean So                         | Root Mean Square Error 0.087194                |                                                     |                                                    |                               |                                                         |
| Mean of Resp                         | onse                                           |                                                     | 0.85866                                            | 7                             |                                                         |
| Observations                         | (or Sum                                        | n Wgts)                                             | 3                                                  | 0                             |                                                         |
| Lack Of F                            | it                                             |                                                     |                                                    |                               |                                                         |
| Source                               | DF                                             | Sum of                                              | f Squares                                          | Mean Squ                      | iare F Ratio                                            |
| Lack Of Fit                          | 3                                              | 0.0                                                 | 09271330                                           | 0.030                         | 904 6.4295                                              |
| Pure Error                           | 25                                             | 0.1                                                 | 12016667                                           | 0.004                         | 807 Prob > F                                            |
| Total Error                          | 28                                             | 0.2                                                 | 21287997                                           |                               | 0.0022*                                                 |
|                                      |                                                |                                                     |                                                    |                               |                                                         |
|                                      |                                                |                                                     |                                                    |                               | Max RSq                                                 |
|                                      |                                                |                                                     |                                                    |                               | Max RSq<br>0.4596                                       |
| Analysis                             | of Var                                         | iance                                               | ,                                                  |                               |                                                         |
| Analysis     Source                  |                                                |                                                     |                                                    | lean Square                   | 0.4596                                                  |
| <u> </u>                             |                                                | um of S                                             |                                                    | lean Squari<br>0.009463       | 0.4596<br>e F Ratio                                     |
| Source                               | DF S                                           | um of S<br>0.009                                    | quares M                                           |                               | 0.4596<br>e F Ratio<br>7 1.2451                         |
| Source<br>Model                      | DF Si<br>1                                     | um of 5<br>0.009<br>0.212                           | quares M<br>946670                                 | 0.00946                       | 0.4596<br>e F Ratio<br>7 1.2451                         |
| Source<br>Model<br>Error             | DF 50<br>1<br>28<br>29                         | um of 5<br>0.009<br>0.212<br>0.222                  | quares M<br>946670<br>287997<br>234667             | 0.00946                       | 0.4596<br>e F Ratio<br>7 1.2451<br>3 Prob > F           |
| Source<br>Model<br>Error<br>C. Total | DF 50<br>1<br>28<br>29<br><b>er Esti</b>       | um of 5<br>0.009<br>0.212<br>0.222                  | quares M<br>946670<br>287997<br>234667             | 0.00946                       | 0.4596<br>e F Ratio<br>7 1.2451<br>3 Prob > F           |
| Source<br>Model<br>Error<br>C. Total | DF 50<br>1<br>28<br>29<br><b>er Esti</b><br>Es | um of S<br>0.009<br>0.212<br>0.222<br><b>mate</b> s | quares M<br>946670<br>287997<br>234667<br><b>S</b> | 0.00946<br>0.00760<br>t Ratio | 0.4596<br>e F Ratio<br>7 1.2451<br>3 Prob > F<br>0.2740 |

The Roll speed is not significant in this model which has a significant lack of fit in this linear regression model. Comparing the results with (a), the Batch effect has been lumped in with experimental error dramatically increasing its size and limiting the suitability of the regression analysis. It is necessary to remove the batch effect to get an effective model.

(3)



In (1), get the residual plot from the results:

To further check its normality, save the residual by choosing "Residuals" in "Save Columns" from the hot spot aside the Response Ribbon Uniformity: problem Fit Least Squares



Then we analyze it in "Distribution":

| Report: Distribution                                                        |                                           |                |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------|----------------|--|--|--|--|
| The distribution of values in each c                                        | The distribution of values in each column |                |  |  |  |  |
| Select Columns                                                              | Cast Selected Columns into Roles          | Action         |  |  |  |  |
| Roller Speed     Batch     Ribbon Uniformity     Residual Ribbon Uniformity | Y, Columns                                | OK<br>Cancel   |  |  |  |  |
|                                                                             | Weight optional Numeric                   | Remove         |  |  |  |  |
|                                                                             | Freq optional Numeric<br>By optional      | Recall<br>Help |  |  |  |  |



The residuals are normally distributed.

## **Optimization Problem.**

8. The product uniformity y from a continuous blender in scenario 2 is related to the tilt(deg) T by the relationship:

$$Y = 100-(20.5-T)2 + ε, if Y>0$$
  
0, if Y≤0

It is clear from the above relationship that the maximum uniformity is obtained at T=20.5

Show how (1) dichotomous search and (2) golden section search can be used to search out this optimum over the region  $0 \le T \le 50$  where the measurement error at any point is

 $\boldsymbol{\varepsilon} \sim N(0,.25)$ 

The smallest difference in T which can be detected is 2 degree.

(Hint: Program the relationship in Excel using the available random number generator)

Solution:

In excel, input  $Y = 100-(20.5-D2)^2+0.5*RAND()$  as the uniformity generator.

(1) Dichotomous search:

|      | Worki  | ng  | middle |    |          |
|------|--------|-----|--------|----|----------|
| Step | interv | /al | point  | Т  | Y        |
| 1    | 0      | 50  | 25     | 24 | 88.13416 |
| I    | 0      | 50  | 25     | 26 | 69.75396 |
| 2    | 0      | 26  | 13     | 12 | 27.75556 |
| Ζ    | 0      | 26  | 13     | 14 | 57.95248 |
| 2    | 12     | 26  | 19     | 18 | 93.89717 |
| 3    | 12     | 26  | 19     | 20 | 100.2358 |
| 1    | 18     | 26  | 22     | 21 | 100.0315 |
| 4    | 18     | 26  | 22     | 23 | 94.03289 |
|      |        |     |        |    |          |

Note in step 1 since Y(26) < Y(24), the optimum cannot lie in the interval (26,50) which is dropped. The rest steps are similar.

Since the smallest detectable difference is 2, we find the maximum is close to (20, 21) as expected.

(2) Golden section method:

|      | Workin  | g  |       |          |
|------|---------|----|-------|----------|
| Step | interva | l  | Т     | Y        |
| 1    | 0       | 50 | 19.19 | 98.42316 |
| I    | 0       | 50 | 30.9  | 0        |

| 2 | 0    | 30.9 | 11.824.34522 |
|---|------|------|--------------|
| 3 | 11.8 | 30.9 | 23.690.42856 |
| 4 | 11.8 | 23.6 | 16.382.70831 |
| 5 | 16.3 | 23.6 | 20.8100.2592 |

In step 1, by gold section ratio,  $50^{*}.618 = 30.9$ ,  $50^{*}.382 = 19.1$ . Since the uniformity is greater at 19.1 than at 30.9, the interval (30.9, 50) cannot contain the optimum. The next experiment is located at 11.8 symmetrically with the (0, 30.9) interval. ( $30.9^{*}.382 = 11.8$ )

Since only smallest detectable difference is 2, we find the maximum is close to 20.8 as expected.

Comparing these two methods, Dichotomous search requires 8 runs while Golden section only 6.

## **Factorial Experimentation**

9. A study is conducted to assess the effect of Pressure (Ton) and Punch Distance (mm) on percent dissolution of a new API after 80 minutes in a Tablet Press in Scenario 2. Three different replicates were taken at random at three pressures and two Punch Distances The data are as follows:

| Pressure (Ton) |          |          |          |  |  |
|----------------|----------|----------|----------|--|--|
| Punch Distance | .75      | 1        | 1.5      |  |  |
| (mm)           |          |          |          |  |  |
| 1              | 74,64,50 | 73,61,44 | 78,85,92 |  |  |
| 2              | 92,86,68 | 98,73,88 | 66,45,85 |  |  |

- (1)Build a mathematical model to describe the mathematical relationship between %Dissolution and (Pressure, Punch Distance).
- (2) Analyze the residuals from this experiment.

Solution:

(1) (a) The mathematical model for a 2\*3 full factorial experiment is:

 $Y=\beta_0+\beta_1P+\beta_2D+\beta_3PD+\beta_4P^2+\beta_5P^2D$ 

(b) Input the data in JMP:

| ▼ problem                |       | Punch    |          |               |
|--------------------------|-------|----------|----------|---------------|
|                          |       | Distance | Pressure | % Dissolution |
|                          | 1     | 1        | 0.75     | 74            |
|                          | 2     | 1        | 0.75     | 64            |
|                          | 3     | 1        | 0.75     | 50            |
| Columns (4/0)            | 4     | 1        | 1        | 73            |
| Punch Distance           | 5     | 1        | 1        | 61            |
| A Pressure               | 6     | 1        | 1        | 44            |
| % Dissolution            | 7     | 1        | 1.5      | 78            |
| 🚄 Residual % Dissolution | 8     | 1        | 1.5      | 85            |
|                          | 9     | 1        | 1.5      | 92            |
|                          | 10    | 2        | 0.75     | 92            |
|                          | 11    | 2        | 0.75     | 86            |
|                          | 12    | 2        | 0.75     | 68            |
| ▼Rows                    | 13    | 2        | 1        | 98            |
| All rows 18              | 14    | 2        | 1        | 73            |
| Selected (               | 1 1 5 | 2        | 1        | 88            |
| Excluded (               | 16    | 2        | 1.5      | 66            |
| Hidden (                 | ) 17  | 2        | 1.5      | 45            |
| Labelled (               | 18    | 2        | 1.5      | 85            |
|                          |       |          |          |               |
|                          | •     |          |          | ►             |

(c) Use stepwise regression. Input the response and all the factors as in the mathematical model in (a).

| JRP      | Fit Model              |                                                 |   |
|----------|------------------------|-------------------------------------------------|---|
| <b>(</b> | Model Specification    | n                                               |   |
|          | Select Columns         | Pick Role Variables Personality: Stepwise       | ~ |
|          | Punch Distance         | γ A% Dissolution                                |   |
|          | Pressure               |                                                 |   |
|          | Residual % Dissolution | Weight optional Numeric Run Model               |   |
|          |                        | Remove                                          |   |
|          |                        | Freq optional Numeric                           |   |
|          |                        | By optional                                     |   |
|          |                        | Construct Model Effects                         |   |
|          |                        | Add Pressure                                    |   |
|          |                        | Punch Distance                                  |   |
|          |                        | Cross Pressure*Pressure Punch Distance*Pressure |   |
|          |                        | Nest Punch Distance*Pressure*Pressure           |   |
|          |                        | Macros 🗸                                        |   |
|          |                        | Degree 2                                        |   |
|          |                        | Attributes 💌                                    |   |
| L        |                        | Transform 💌                                     |   |
|          |                        | No Intercept                                    |   |

### (c) Hit "Run Model":

| 📓 problem7- Fit Stepwise                                                                                                                                          |           |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
| 👻 🗷 Stepwise Fit                                                                                                                                                  |           |          |
| Response: % Dissolution                                                                                                                                           |           |          |
| Stepwise Regression Control                                                                                                                                       |           |          |
| Prob to Enter 0.250 Enter All<br>Prob to Leave 0.100 Remove All<br>Rules: Combine                                                                                 |           |          |
| Go Stop Step Make Model                                                                                                                                           |           |          |
| Current Estimates                                                                                                                                                 |           |          |
| SSE DFE MSE RSquare RSquare Adj Cp AIC<br>4504.4444 17 264.96732 0.0000 0.0000 8.1022592 101.4041                                                                 |           |          |
| Lock Entered Parameter SS                                                                                                                                         | "F Ratio" | "Prob>F" |
| ✓ ✓ Intercept 73.444444 1 0                                                                                                                                       | 0.000     | 1.0000   |
| Pressure     0 1 26.68254                                                                                                                                         | 0.095     | 0.7615   |
| Punch Distance     0 1 355.5556                                                                                                                                   | 1.371     | 0.2588   |
| (Pressure-1.08333)*(Pressure-1.08333)         0         2         27.44444           (Punch Distance-1.5)*(Pressure-1.08333)         0         3         1849.159 | 0.046     | 0.9552   |
|                                                                                                                                                                   | 3.250     | 0.0540   |
| (Punch Distance-1.5)*(Pressure-1.08333)*(Pressure-1.08333)                                                                                                        | 2.420     | 0.0973   |
| ▼ Step History                                                                                                                                                    |           |          |
|                                                                                                                                                                   |           |          |

(d) Input .05 as Entry and Exit  $\alpha$  level. Choose "Backward" in "Direction". Hit "Enter All" and "Go":

| 🗟 Fit Stepwise                                                                                                                                                                                                                                                                                                                                                             | ×   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ▼ Stepwise Fit                                                                                                                                                                                                                                                                                                                                                             |     |
| Response: % Dissolution                                                                                                                                                                                                                                                                                                                                                    |     |
| ▼ Stepwise Regression Control                                                                                                                                                                                                                                                                                                                                              |     |
| Prob to Enter 0.050 Enter All Prob to Leave 0.050 Direction: Backward  Remove All                                                                                                                                                                                                                                                                                          |     |
| Rules: Combine  Go Stop Step Make Model                                                                                                                                                                                                                                                                                                                                    |     |
| ▼ Current Estimates                                                                                                                                                                                                                                                                                                                                                        |     |
| SSE DFE MSE RSquare RSquare Adj Cp AIC<br>2655.2857 14 189.66327 0.4105 0.2842 4.2078308 97.89084                                                                                                                                                                                                                                                                          |     |
| Lock Entered Parameter SS "F Ratio" "Prob>                                                                                                                                                                                                                                                                                                                                 | •F" |
| ✓ ✓ Intercept 55,8809524 1 0 0.000 1.00                                                                                                                                                                                                                                                                                                                                    | 00  |
| □ 🗹 Pressure 3.9047619 2 1493.603 3.938 0.04                                                                                                                                                                                                                                                                                                                               | 40  |
| □ 🗹 Punch Distance 8.88888889 2 1822.476 4.805 0.02                                                                                                                                                                                                                                                                                                                        | 58  |
| ✓         Punch Distance         8.88888889         2         1822.476         4.805         0.02           □         (Pressure-1.08333)*(Pressure-1.08333)         0         1         0.761905         0.004         0.95           □         ✓         (Punch Distance-1.5)*(Pressure-1.08333)         -57.904762         1         1466.921         7.734         0.01 | 22  |
|                                                                                                                                                                                                                                                                                                                                                                            | 47  |
| Participant (Punch Distance-1.5)*(Pressure-1.08333)*(Pressure-1.08333)                                                                                                                                                                                                                                                                                                     | 30  |
| ▼ Step History                                                                                                                                                                                                                                                                                                                                                             |     |
| Step Parameter Action "Sig Prob" Seq SS RSquare Cp p                                                                                                                                                                                                                                                                                                                       |     |
| 1 (Pressure-1.08333)*(Pressure-1.08333) Removed 0.3630 412.619 0.4105 4.2078 4                                                                                                                                                                                                                                                                                             |     |

Now since the interaction term is significant, for the sake of easy explanation, we keep both main effects from the interaction in the model.



(e) Hit "Make Model" and run the model:

The final model is:

Y = 55.88 + 3.90P + 8.89D - 57.90PD

(2) Get the residual plots in the analysis in (1):



The residuals seem randomly scattered.



But its normality needs further test.

10. Design a full factorial experiment to determine the effect of Tilt, Speed, Load and Inlet powder flow on the uniformity and density in a series of batch runs in a continuous blender in scenario 2. Consider the following cases:

(a) All factors at two levels.

(b) All factors at three levels.

(c) Tilt at 2 levels, Speed at three levels, load at four levels and inlet powder flow at 2 levels.

(1) For each of these cases give the following:

i) the actual experiments that must be run.

ii) the mathematical model

(2) Describe the role of replication, randomization and blocking

Solution:

(1)

(a)

i) Use "Full Factorial Design" in "DOE", input the factors and levels. Hit "Make Table":

| 2x2x2x2 Factorial        |     |         |      |       |      |        |   |          |
|--------------------------|-----|---------|------|-------|------|--------|---|----------|
|                          | ● ● |         |      |       |      | Inlet  |   | <b>▲</b> |
| Design 2x2x2x2 Factorial |     | Pattern | Tilt | Speed | Load | powder | Y |          |
| ▼Model                   | 1   |         | -1   | -1    | -1   | -1     | • |          |
|                          | 2   | +       | -1   | -1    | -1   | 1      | • |          |
|                          | 3   | +-      | -1   | -1    | 1    | -1     | • |          |
|                          | 4   | ++      | -1   | -1    | 1    | 1      | • |          |
|                          | 5   | -+      | -1   | 1     | -1   | -1     | • |          |
| 💌 Columns (6/0)          | 6   | -+-+    | -1   | 1     | -1   | 1      | • |          |
| 🆺 Pattern 🖉              | 7   | -++-    | -1   | 1     | 1    | -1     | • |          |
| 🔺 Tilt 🗶                 | 8   | -+++    | -1   | 1     | 1    | 1      | • |          |
| 🚄 Speed 苯<br>🚄 Load 苯    | 9   | +       | 1    | -1    | -1   | -1     | • |          |
| Inlet powder flow 🗶      | 10  | ++      | 1    | -1    | -1   | 1      | • |          |
|                          | 11  | +-+-    | 1    | -1    | 1    | -1     | • |          |
|                          | 12  | +-++    | 1    | -1    | 1    | 1      | • |          |
|                          | 13  | ++      | 1    | 1     | -1   | -1     | • |          |
|                          | 14  | ++-+    | 1    | 1     | -1   | 1      | • |          |
|                          | 15  | +++-    | 1    | 1     | 1    | -1     | • |          |
| Rows                     | 16  | ++++    | 1    | 1     | 1    | 1      | • |          |
| All rows 16              | 1   |         |      |       |      |        |   |          |
| Selected 0               |     |         |      |       |      |        |   |          |
| Excluded 0               |     |         |      |       |      |        |   |          |
| Hidden O                 |     |         |      |       |      |        |   |          |
| Labelled 0               |     |         |      |       |      |        |   |          |
|                          |     |         |      |       |      |        |   |          |
|                          | 4   |         |      |       |      |        |   |          |

The mathematical model is:

(Where T is for Tilt, S is for Speed, L is for Load, I is for Inlet powder flow)

$$\begin{split} Y = \mu + T + S + L + I + TS + TL + TI + SL + SI + LI + TSL + TSI + TLI \\ + SLI + TSLI + \epsilon \end{split}$$

(b) Use the same method as in (a)(The table is copied from JMP):

|         |      |       |      | IIIIet |
|---------|------|-------|------|--------|
|         |      |       |      | Powder |
| Pattern | Tilt | Speed | Load | Flow   |
| 1111    | 1    | 1     | 1    | 1      |
| 1112    | 1    | 1     | 1    | 2      |
| 1113    | 1    | 1     | 1    | 3      |
| 1121    | 1    | 1     | 2    | 1      |
| 1122    | 1    | 1     | 2    | 2      |
|         |      |       |      |        |

Inlet

.

The mathematical model is:

(Where T is for Tilt, S is for Speed, L is for Load, I is for Inlet powder flow)

$$\begin{split} Y &= \mu + T + S + L + I + TS + TL + TI + SL + SI + LI + TSL + TSI + TLI \\ &+ SLI + TSLI + T^2 + S^2 + L^2 + I^2 + T^2S + TS^2 + T^2S^2 + T^2L + TL^2 + T^2L^2 \\ &+ T^2I + TI^2 + T^2I^2 + S^2L + SL + SL^2 + S^2I + SI^2 + S^2I^2 + L^2I + LI^2 + L^2I^2 \\ &+ T^2SL + TS^2L + TSL^2 + T^2S^2L + T^2SL^2 + TS^2L^2 + T^2S^2L^2 + T^2SI + TS^2I \\ &+ TSI^2 + T^2S^2I + TS^2I^2 + T^2SI^2 + T^2S^2I^2 + T^2LI + TLI^2 + TLI^2 + T^2L^2I + \\ &+ T^2LI^2 + TL^2I^2 + T^2L^2I^2 + S^2LI + SLI^2 + S^2L^2I + S^2LI^2 + SL^2I^2 + \\ &+ S^2L^2I^2 + T^2SLI + TS^2LI + TSL^2I + TSLI^2 + T^2S^2LI + T^2SL^2I + T^2SLI^2 + \\ &+ TS^2L^2I + TS^2LI^2 + TSL^2I^2 + T^2S^2L^2I + T^2S^2LI^2 + T^2SL^2I + \\ &+ TS^2L^2I + TS^2LI^2 + TSL^2I^2 + T^2S^2L^2I + T^2S^2LI^2 + T^2SL^2I^2 + \\ &+ TS^2L^2I + TS^2LI^2 + TSL^2I^2 + T^2S^2L^2I + T^2S^2LI^2 + T^2SL^2I^2 + \\ &+ TS^2L^2I^2 + TS^2LI^2 + TSL^2I^2 + T^2S^2L^2I + T^2S^2LI^2 + \\ &+ TS^2L^2I^2 + TS^2LI^2 + TSL^2I^2 + T^2S^2L^2I + T^2S^2LI^2 + \\ &+ TS^2L^2I^2 + TS^2LI^2 + \\ &+ TS^2L^2I^2 + TS^2LI^2 + \\ &+ TS^2L^2I^2 + \\ &+ TS^2LI^2 + \\ &+ T$$

(c) Use the same method as in (a) (The table is copied from JMP):

Inlat

|         |      |       |      | Inlet  |
|---------|------|-------|------|--------|
|         |      |       |      | Powder |
| Pattern | Tilt | Speed | Load | Flow   |
| -11-    | -1   | 1     | 1    | -1     |
| -11+    | -1   | 1     | 1    | 1      |
| -12-    | -1   | 1     | 2    | -1     |
| -12+    | -1   | 1     | 2    | 1      |
| -13-    | -1   | 1     | 3    | -1     |
| –13+    | -1   | 1     | 3    | 1      |
| -14-    | -1   | 1     | 4    | -1     |
| -14+    | -1   | 1     | 4    | 1      |
| -21-    | -1   | 2     | 1    | -1     |
| -21+    | -1   | 2     | 1    | 1      |
| -22-    | -1   | 2     | 2    | -1     |
| -22+    | -1   | 2     | 2    | 1      |
| -23-    | -1   | 2     | 3    | -1     |
| -23+    | -1   | 2     | 3    | 1      |
| -24-    | -1   | 2     | 4    | -1     |
| -24+    | -1   | 2     | 4    | 1      |
| -31-    | -1   | 3     | 1    | -1     |
| -31+    | -1   | 3     | 1    | 1      |
| -32-    | -1   | 3     | 2    | -1     |
| -32+    | -1   | 3     | 2    | 1      |
|         |      |       |      |        |

| -33-                                                         | -1                       | 3                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
|--------------------------------------------------------------|--------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| -33-<br>-33+                                                 | -1                       | 3                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| -34-                                                         | -1                       | 3                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| -34+                                                         | -1                       | 3                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| -34-<br>-34+<br>+11-<br>+11+<br>+12-<br>+12+<br>+13-<br>+13+ | -1<br>-1<br>-1<br>1<br>1 | 1                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +11+                                                         | 1                        | 1                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +12–                                                         | 1                        | 1                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +12+                                                         | 1                        | 1                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +13–                                                         | 1<br>1                   | 1                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +13+                                                         | 1                        | 1                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +14-<br>+14+<br>+21-<br>+21+<br>+22-                         | 1                        | 1                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +14+                                                         | 1<br>1                   | 1                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +21–                                                         |                          | 2                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +21+                                                         | 1<br>1<br>1              | 2                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +22–                                                         | 1                        | 2                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +22+                                                         | 1                        | 2                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +22+<br>+23-<br>+23+<br>+24-<br>+24+<br>+31-<br>+31+<br>+32- | 1                        | 2                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +23+                                                         | 1                        | 2                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +24–                                                         | 1<br>1<br>1              | 2                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +24+                                                         | 1                        | 2                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +31–                                                         | 1                        | 3                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +31+                                                         | 1<br>1                   | 3                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +32–                                                         | 1                        | 3                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +32+                                                         | 1<br>1                   | 3                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
| +32+<br>+33–                                                 | 1                        | 3                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +33+                                                         | 1                        | 3 3 3 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 | 3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>3<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>2<br>3<br>3<br>3<br>4<br>4<br>4<br>1<br>2<br>3<br>3<br>3<br>4<br>4<br>4<br>3<br>3<br>3<br>4<br>4<br>4<br>3<br>3<br>3<br>4<br>4<br>4<br>3<br>3<br>3<br>4<br>4<br>3<br>3<br>3<br>4<br>4<br>4<br>3<br>3<br>3<br>3<br>4<br>4<br>3<br>3<br>3<br>3<br>4<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 |
| +34–                                                         | 1<br>1<br>1              | 3                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                    |
| +33+<br>+34–<br>+34+                                         | 1                        | 3                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |
|                                                              |                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |

The mathematical model is:

(Where T is for Tilt, S is for Speed, L is for Load, I is for Inlet powder flow)

$$\begin{split} Y &= \mu + T + S + L + I + TS + TL + TI + SL + SI + LI + TSL + TSI + TLI \\ &+ SLI + TSLI + S^2 + L^2 + L^3 + TS^2 + TL^2 + TL^3 + S^2L^2 + S^2L^3 + S^2I + L^2I \\ &+ L^3I + TS^2L + TSL^2 + TSL^3 + TS^2L^2 + TS^2L^3 + TS^2I + TL^2I + TL^3I + \\ S^2LI + SL^2I + SL^3I + S^2L^2I + S^2L^3I + TS^2LI + TSL^2I + TSL^3I + TS^2L^2I + \\ TSL^3I + \epsilon \end{split}$$

(2) Replication provides the estimate of pure error. Randomization is necessary for conclusions drawn from the experiment to be correct, unambiguous and defensible. Randomization eliminates the batch effects. Blocking may show the batch effects.

## **Fractional Factorial Experiments with two levels**

11. In the investigation of the conditions of filtration during the preparation of an API, the objective was to improve the quality of the product. Four factors were examined:

- A. Concentration of liquor when filtered (concentrated v. dilute)
- B. Effect of Liquor Storage (fresh vs old). The liquor was either filtered immediately or kept a week before filtration.
- C. Presence or absence of an anti-frothing agent.
- D. Temperature of Filtration (high vs low)

It was considered unlikely that large interactions would exist between these factors so that a  $\frac{1}{2}$  replicate of a 2<sup>4</sup> factorial was selected with defining contrast D=ABC. The purity of the product was recorded in the table below:

| Run No | А  | В  | С  | D  | Purity |
|--------|----|----|----|----|--------|
| 1      | -1 | -1 | -1 | -1 | 107    |
| 2      | 1  | -1 | -1 | +1 | 114    |
| 3      | -1 | 1  | -1 | 1  | 122    |
| 4      | +1 | +1 | -1 | -1 | 130    |
| 5      | -1 | -1 | 1  | 1  | 106    |
| 6      | 1  | -1 | +1 | -1 | 121    |
| 7      | -1 | +1 | +1 | -1 | 120    |
| 8      | 1  | 1  | 1  | 1  | 132    |

Determine:

- (1) The pattern of aliases for the experiment.
- (2) The main effects and interactions
- (3) If the error in the measurements is 2 units, which factors are significant?

Solution"

(1) A= BCD, B=ACD, C=ABD, D=ABC.

and

AB=CD, AC=BD, AD=BC

#### (2) Input the data in the JMP:

| 🛗 problem 11          |   |    |    |    |    |        | ×          |
|-----------------------|---|----|----|----|----|--------|------------|
| ♥problem 11           | • |    |    |    |    |        | -          |
| Design Custom Design  |   | A  | В  | C  | D  | Purity | _          |
| Criterion D Optimal   | 1 | -1 | -1 | -1 | -1 | 107    | _          |
| ▼Model                | 2 | 1  | -1 | -1 | +1 | 114    |            |
|                       | 3 | -1 | 1  | -1 | 1  | 122    |            |
| 💌 Columns (5/0)       | 4 | 1  | 1  | -1 | -1 | 130    |            |
| ња 🛪                  | 5 | -1 | -1 | 1  | 1  | 106    |            |
| 🔥 в 🗱                 | 6 | 1  | -1 | 1  | -1 | 121    |            |
| <b>止</b> ∈ <b>*</b>   | 7 | -1 | 1  | 1  | -1 | 120    |            |
| <b>ii.</b> D <b>*</b> | 8 | 1  | 1  | 1  | 1  | 132    |            |
| 🚄 Purity 米            |   |    |    |    |    |        |            |
| Rows                  |   |    |    |    |    |        |            |
| All rows 8 🔺          |   |    |    |    |    |        |            |
| Selected 0            |   |    |    |    |    |        |            |
| Excluded 0            |   |    |    |    |    |        | - <b>-</b> |
|                       | • |    |    |    |    | •      |            |

Run "Fit Model" in "Analyze" with main effects A, B, C and interactions AB, AC and ABC as factors:

| ľ | ▼Summar     | y of I   | Fit       |        |          |         |     |         |
|---|-------------|----------|-----------|--------|----------|---------|-----|---------|
|   | RSquare     |          |           | 0.992  | 2991     |         |     |         |
|   | RSquare Ad  | lj       |           | 0.950  | )935     |         |     |         |
|   | Root Mean : | Square   | Error     | 2.12   | 2132     |         |     |         |
|   | Mean of Re: | sponse   |           |        | 119      |         |     |         |
|   | Observation | ns (or S | ium Wgts) |        | 8        |         |     |         |
| ľ | Analysis    | s of V   | ariance   | 1      |          |         |     |         |
|   | Source      | DF       | Sum of S  | quares | Mean 9   | Square  |     | F Ratio |
|   | Model       | 6        | 637.      | 50000  | 10       | 6.250   | 2   | 3.6111  |
|   | Error       | 1        | 4.        | 50000  |          | 4.500   | P   | rob > F |
|   | C. Total    | - 7      | 642.      | .00000 |          |         | 0   | .1562   |
| Ì | Parame      | ter Es   | stimate   | 5      |          |         |     |         |
|   | Term        |          | Estir     | mate   | Std Erro | r tRa   | tio | Prob> t |
|   | Intercept   |          |           | 119    | 0.75     | 5 158.0 | 67  | 0.0040* |
|   | A[-1]       |          | -         | 5.25   | 0.75     | 5 -7.0  | 00  | 0.0903  |
|   | B[-1]       |          |           | -7     | 0.75     | 5 -9.3  | 33  | 0.0680  |
|   | ⊂[-1]       |          | -         | 0.75   | 0.75     | 5 -1.0  | 00  | 0.5000  |
|   | A[-1]*B[-1] |          | -         | 0.25   | 0.75     | 5 -0.3  | 33  | 0.7952  |
|   | A[-1]*⊂[-1] |          |           | 1.5    | 0.75     | 5 2.0   | 00  | 0.2952  |
|   | A[-1]*B[-1] | *C[-1]   |           | 0.5    | 0.75     | 5 0.0   | 67  | 0.6257  |
|   |             |          |           |        |          |         |     |         |

(3) Calculate the Z statistic and check the Z value as:

| Term | Estimate | error | Z statistic | Prob> Z |  |  |  |
|------|----------|-------|-------------|---------|--|--|--|
| А    | -5.25    | 2     | -2.625      | 0.0087  |  |  |  |
| В    | -7       | 2     | -3.5        | 0.0005  |  |  |  |
| С    | -0.75    | 2     | -0.375      | 0.7077  |  |  |  |
| AB   | -0.25    | 2     | -0.125      | 0.9005  |  |  |  |
| AC   | 1.5      | 2     | 0.75        | 0.4533  |  |  |  |
| ABC  | 0.5      | 2     | 0.25        | 0.8026  |  |  |  |

Main effects A and B are significant at .05 level.

12. O.L. Davies. The following experiment was conducted in a batch reactor (Scenario 1) to investigate conditions affecting the yield of an API. Five factors were investigated with the following levels:

| Factors                        | Le           | vel    |
|--------------------------------|--------------|--------|
| A A/B Feed ratio               | Low          | High   |
| B Amount of Liquid Catalyst    | Concentrated | Dilute |
| C Amount of Anti-foaming agent | None         | Some   |
| D Time of Reaction             | Short        | Fast   |
| E Agitation                    | Slow         | Fast   |

Setting the signs of D=-AE and C=+AB, the following Percent Yield data were obtained (the analysis for each run was repeated)

| Run No | A  | В  | С  | D  | Е  | Yield     |
|--------|----|----|----|----|----|-----------|
| 1      | -1 | -1 | +1 | -1 | -1 | 53.1,54.6 |
| 2      | +1 | -1 | -1 | +1 | -1 | 49.3,48.4 |
| 3      | -1 | +1 | -1 | -1 | -1 | 50.1,51.4 |
| 4      | +1 | +1 | +1 | +1 | -1 | 68.3,67.4 |
| 5      | -1 | -1 | +1 | +1 | +1 | 73.4,75.3 |
| 6      | +1 | -1 | -1 | -1 | +1 | 79.7,78.0 |
| 7      | -1 | +1 | -1 | +1 | +1 | 84.5,86.4 |
| 8      | +1 | +1 | +1 | -1 | +1 | 81.3,80.4 |

Design of Experiment and Product Yield

(1) What are the defining contrasts?

(2) Determine the pattern of aliases.

(3) What are the significant main effects and interactions?

(4) Is there a significant lack of fit?

(5) Based on this data what is the optimal way to run the reaction?

Solution:

The defining contrasts are:

$$I = -ADE = ABC = -BCDE$$

$$(2) A = -DE = BC = -ABCDE$$
$$B = -ABDE = AC = -CDE$$
$$C = -ACDE = AB = -BDE$$
$$D = -AE = ABCD = -BCE$$
$$E = -AD = ABCE = -BCD$$
$$BD = -ABE = ACD = -CE$$
$$BE = -ABD = ACE = -CD$$

(3)

(a) Input the data in the JMP:

| 🛗 problem 12         |    |    |    |    |    |    |       |   |
|----------------------|----|----|----|----|----|----|-------|---|
| ♥ problem 12         | •  |    |    |    |    |    |       |   |
| Design Custom Design |    | A  | В  | С  | D  | E  | Yield | _ |
| Criterion D Optimal  |    | -1 | -1 | 1  | -1 | -1 | 53.1  | _ |
| ▼Model               | 2  | -1 | -1 | 1  | -1 | -1 | 54.6  | _ |
|                      | 3  | 1  | -1 | -1 | 1  | -1 | 49.3  |   |
|                      | 4  | 1  | -1 | -1 | 1  | -1 | 48.4  |   |
| Columns (6/0)        | 5  | -1 | 1  | -1 | -1 | -1 | 50.1  |   |
| <b>L</b> A <b>*</b>  | 6  | -1 | 1  | -1 | -1 | -1 | 51.4  |   |
| 🔥 в 🗱                | 7  | 1  | 1  | 1  | 1  | -1 | 68.3  |   |
| <b>L</b> c*          | 8  | 1  | 1  | 1  | 1  | -1 | 67.4  | _ |
| <b>ii.</b> D 🛠       | 9  | -1 | -1 | 1  | 1  | 1  | 73.4  | _ |
| <b>L E *</b>         | 10 | -1 | -1 | 1  | 1  | 1  | 75.3  | _ |
| 🚄 Yield 苯            | 11 | 1  | -1 | -1 | -1 | 1  | 79.7  | - |
|                      | 12 | 1  | -1 | -1 | -1 | 1  | 78    | - |
| Rows                 | 13 | -1 | 1  | -1 | 1  | 1  | 84.5  | - |
| All rows 16          | 14 | -1 | 1  | -1 | 1  | 1  | 86.4  |   |
| Selected 0           | 15 | 1  | 1  | 1  | -1 | 1  | 81.3  |   |
| Excluded 0           | 16 | 1  | 1  | 1  | -1 | 1  | 80.4  |   |
| Hidden 0             |    |    |    |    |    |    |       | • |
| Labelled 0           | •  |    |    |    |    |    | Þ     |   |

(b) Input the response and the factors:

| 🔝 Report: Fit Model  |                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                                      |        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------|--------|
| ▼ Model Specificatio | n                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                      |        |
| Select Columns       | Pick Role Variables          Y       Yield         optional       Optional         Weight       optional Numeric         Freq       optional Numeric         By       optional         Construct Model Effects       A         Add       A         Cross       D         Nest       E         B*D       B*E         Degree       2         Attributes       Transform | Personality:<br>Emphasis:<br>Help<br>Remove | Standard Least Squa<br>Effect Screening<br>Run Model | ares V |
|                      | No Intercept                                                                                                                                                                                                                                                                                                                                                          |                                             |                                                      |        |

#### (c) Run the model:

| Summary of       | f Fit    |          |      |         |    |        |      |
|------------------|----------|----------|------|---------|----|--------|------|
| RSquare          |          | 0.997    | 244  |         |    |        |      |
| RSquare Adj      |          | 0.994    | 833  |         |    |        |      |
| Root Mean Squar  | re Error | 1.014    | 889  |         |    |        |      |
| Mean of Respons  | ;e       | 6        | 7.6  |         |    |        |      |
| Observations (or | Sum Wgts | )        | 16   |         |    |        |      |
| Analysis of      | Variance | e        |      |         |    |        |      |
| Source DF        | Sum of S | 5quares  | Mea  | an Squa | re | F Ra   | atio |
| Model 7          | 298      | 31.8400  |      | 425.9   | 77 | 413.5  | 700  |
| Error 8          | }        | 8.2400   |      | 1.0     | 30 | Prob   | > F  |
| C. Total 15      | 5 299    | 90.0800  |      |         |    | <.00   | D1*  |
| Parameter I      | Estimate | es       |      |         |    |        |      |
| Term             | Estimate | Std Erro | or   | t Ratio | Pr | ob> t  |      |
| Intercept        | 67.6     | 0.25372  | 22 3 | 266.43  | <  | .0001* |      |
| A[-1]            | -1.5     | 0.25372  | 22   | -5.91   | 0  | .0004* |      |
| B[-1]            | -3.625   | 0.25372  | 22   | -14.29  | <  | .0001* |      |
| ⊂[-1]            | -1.625   | 0.25372  | 22   | -6.40   | 0  | .0002* |      |
| D[-1]            | -1.525   |          |      | -6.01   |    | .0003* |      |
| E[-1]            | -12.275  |          |      | -48.38  |    | .0001* |      |
| B[-1]*D[-1]      | 3.9      |          |      | 15.37   |    | .0001* |      |
| B[-1]*E[-1]      | -0.35    | 0.25372  | 22   | -1.38   | 0  | .2051  |      |

All the main effects are significant on the .05 level. BD interaction is also significant on the .05 level.

(4) Remove BE interaction, run the model again:

| ▼ Summary    | y of Fit |         |           |                  |         |       |        |       |
|--------------|----------|---------|-----------|------------------|---------|-------|--------|-------|
| RSquare      |          |         | 0.996     | 589              |         |       |        |       |
| RSquare Adj  |          |         | 0.994     | 315              |         |       |        |       |
| Root Mean S  |          | ror     | 1.064     | 581              |         |       |        |       |
| Mean of Res  | •        |         |           | 57.6             |         |       |        |       |
| Observations | •        | ) Wats  | ) -       | 16               |         |       |        |       |
| Analysis     |          |         |           |                  |         |       |        |       |
| Source       | DF S     | um of S | õquares   | Mea              | an Squa | re    | F Rati | io    |
| Model        | 6        | 297     | 79.8800   |                  | 496.6   | 47 43 | 8.217  | 6     |
| Error        | 9        | 1       | 0.2000    |                  | 1.1     | 33 PI | rob >  | F     |
| C. Total     | 15       | 299     | 90.0800   |                  |         | <     | .0001  | *     |
| Lack Of F    | īt       |         |           |                  |         |       |        |       |
| Source       | DF       | Sumo    | of Square | s M              | Mean Sc | uare  | FR     | tatio |
| Lack Of Fit  | 1        |         | 1.96000   | 0                | 1.9     | 6000  | 1.9    | 9029  |
| Pure Error   | 8        |         | 8.24000   | 0                | 1.0     | 3000  | Prob   | > F   |
| Total Error  | 9        | :       | 10.20000  | 0                |         |       | 0.20   | )51   |
|              |          |         |           |                  |         |       | Max I  | RSq   |
|              |          |         |           |                  |         |       | 0.9    | 972   |
| Paramet      | er Esti  | mate    | es        |                  |         |       |        |       |
| Term         | Est      | imate   | Std Err   | or               | t Ratio | Prob: | >ltl   |       |
| Intercept    |          | 67.6    | 0.26614   | <del>1</del> 5 2 | 254.00  | <.00  |        |       |
| A[-1]        |          | -1.5    | 0.26614   | <del>1</del> 5   | -5.64   | 0.00  | 03*    |       |
| B[-1]        | -:       | 3.625   | 0.26614   | <del>1</del> 5   | -13.62  | <.00  | 01*    |       |
| ⊂[-1]        | -        | 1.625   | 0.26614   | <del>1</del> 5   | -6.11   | 0.00  | 02*    |       |
| D[-1]        | -        | 1.525   | 0.26614   | <del>1</del> 5   | -5.73   | 0.00  | 03*    |       |
| E[-1]        | -13      | 2.275   | 0.26614   | <del>1</del> 5   | -46.12  | <.00  | 01*    |       |
| B[-1]*D[-1]  |          | 3.9     | 0.26614   | <del>1</del> 5   | 14.65   | <.00  | 01*    |       |
|              |          |         |           |                  |         |       |        |       |

There is no significant lack of fit on the .05 level.

(5) To maximize the yield, all the main effects should be run on the low level.

13. In the batch reaction API yield study described in scenario 1, it was decided to make a series of runs including temperate as well as the other five factors. Based on their previous success they were allowed to conduct 16 runs.

(1) Design a fractional factorial experiment which is a <sup>1</sup>/<sub>4</sub> fraction of a  $2^6$  full factorial experiment which maximizes the probability of testing for the significant of main effect and two factor interactions.

(2) What are the defining contrasts and pattern of aliases for this design.

(3) List the considerations in deciding which fraction to run.

Solution:

| Run | А | В | С | D | E=ABC | F=BCD |
|-----|---|---|---|---|-------|-------|
| 1   | - | - | - | - | -     | -     |
| 2   | + |   | _ |   | +     |       |
| 3   | - | + | _ |   | +     | +     |
| 4   | + | + | _ |   |       | +     |
| 5   | - | - | + |   | +     | +     |
| 6   | + |   | + |   | _     | +     |
| 7   | _ | + | + |   | _     |       |
| 8   | + | + | + |   | +     | _     |
| 9   |   | т |   | - |       | -     |
|     | - | - | - | + | -     | +     |
| 10  | + | - | - | + | +     | +     |
| 11  | - | + | - | + | +     | -     |
| 12  | + | + | - | + | -     | -     |
| 13  | - | - | + | + | +     | -     |
| 14  | + | - | + | + | -     | -     |
| 15  | - | + | + | + | -     | +     |
| 16  | + | + | + | + | +     | +     |

#### (2) Generators:

E = ABC and F = BCD

The defining contrasts are:

I = ABCE = BCDF = ADEF

The aliases pattern are:

| A = BCE = DEF = ABCDF |
|-----------------------|
| B = ACE = CDF = ABDEF |
| C = ABE = BDF = ACDEF |
| D = BCF = AEF = ABCDE |
| E = ABC = ADF = BCDEF |
| F = BCD = ADE = ABCEF |
| AB = CE = ACDF = BDEF |
| AC = BE = ABDF = CDEF |
| AD = EF = BCDE = ABCF |
| AE = BC = DF = ABCDEF |
| AF = DE = BCEF = ABCD |
| BD = CF = ACDE = ABEF |
| BF = CD = ACEF = ABDE |
| ABD = CDE = ACF = BEF |
| ACD = BDE = ABF = CEF |

(3) All fractions have the same extent of confounding between main effects and interactions. Frequently several experiments are already available and it is wise to select for the fraction in which the greatest number of existing experiments has been run. Another consideration is the actual level of the experiments. Run the easiest ones. For example, the run with all the factors at their highest level might be difficult. Carefully go over the potential difficulties before selecting the fraction.

## **Response Surface Modeling and Optimization**

14. An experiment was run in a batch reactor to determine the effect of temperature and reaction time on the yield of the API. These factors are coded as x1= (temperature -300deg)/50deg and x2=(time-10hrs)/5 hours. The following coded data was obtained where the yield is in percent

| Run No | X1      | X2      | Yield (%) |
|--------|---------|---------|-----------|
| 1      | -1      | 0       | 78.03     |
| 2      | 1       | 0       | 80.4      |
| 3      | 0       | 0       | 80.1      |
| 4      | 0       | 0       | 80.95     |
| 5      | 0       | -1      | 80.3      |
| 6      | 0       | 1       | 80.08     |
| 7      | 0       | 0       | 80.97     |
| 8      | -1.4142 | -1.4142 | 74.38     |
| 9      | -1.4142 | 1.4142  | 74.87     |
| 10     | 1.4142  | -1.4142 | 75.68     |
| 11     | 1.4142  | 1.4142  | 78.13     |
| 12     | 0       | 0       | 80.44     |

(1) Fit a response surface model to the data. Is the model adequate to describe the data?

(2) Plot the yield response curve. What recommendations would you make about the operating conditions for the reactor?

Solution

(1)

(a) Input the data:

| 🛗 problem 14               |       |         |         |       |          |
|----------------------------|-------|---------|---------|-------|----------|
| ▼problem 14                | • •   |         |         |       | <u> </u> |
| Design Central Composite ( | j 💿 🦳 | X1      | X2      | Yield |          |
| ▼Model                     | 1     | -1      | 0       | 78.03 |          |
|                            | 2     | 1       | 0       | 80.4  |          |
|                            | 3     | 0       | 0       | 80.1  |          |
| Columns (3/0)              | 4     | 0       | 0       | 80.95 |          |
| X1 *                       | 5     | 0       | -1      | 80.3  |          |
| ▲ X2 ★                     | 6     | 0       | 1       | 80.08 |          |
| Vield \star                | 7     | 0       | 0       | 80.97 |          |
|                            | 8     | -1.4142 | -1.4142 | 74.38 |          |
|                            | 9     | -1.4142 | 1.4142  | 74.87 |          |
|                            | 10    | 1.4142  | -1.4142 | 75.68 |          |
| Rows                       | 11    | 1.4142  | 1.4142  | 78.13 |          |
| All rows 12                | 12    | 0       | 0       | 80.44 |          |
| Selected (<br>Excluded (   |       |         |         |       |          |
|                            |       |         |         |       |          |
| Labelled (                 |       |         |         |       |          |

## (b) Run script in "Model":

| 🔡 Report: Fit Model |                          |                                       |
|---------------------|--------------------------|---------------------------------------|
| Model Specification | n                        |                                       |
| Select Columns      | Pick Role Variables      | Personality: Standard Least Squares 💙 |
| ▲ X1<br>▲ X2        | Y Vield                  | Emphasis: Effect Screening 🗸          |
| Vield               | optionar                 |                                       |
|                     | Weight optional Numeric  | Help Run Model                        |
|                     | Freq optional Numeric    |                                       |
|                     | By optional              | Remove                                |
|                     |                          |                                       |
|                     | Construct Model Effects  |                                       |
|                     | Add X1& RS<br>X2& RS     |                                       |
|                     | Cross X1*X2              |                                       |
|                     | Nest V2*V2               |                                       |
|                     |                          |                                       |
|                     | Macros V                 |                                       |
|                     | Degree 2<br>Attributes 💌 |                                       |
|                     | Transform 💌              |                                       |
|                     | No Intercept             |                                       |
|                     |                          |                                       |

#### (3) Run model:

| Summary      | y of Fit                                                                                                                                                             | t                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RSquare      |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   | 0.975                                                                                                                                                                                                                                                                                                                                                                        | 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RSquare Adj  |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   | 0.954                                                                                                                                                                                                                                                                                                                                                                        | 855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Root Mean S  | quare Ei                                                                                                                                                             | rror                                                                                                                                                                                                                                                                                                              | 0.519                                                                                                                                                                                                                                                                                                                                                                        | 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mean of Resp | ponse                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   | 78.69                                                                                                                                                                                                                                                                                                                                                                        | 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Observations | s (or Sur                                                                                                                                                            | n Wç                                                                                                                                                                                                                                                                                                              | gts)                                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Analysis     | of Va                                                                                                                                                                | riar                                                                                                                                                                                                                                                                                                              | nce                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Source       | DF S                                                                                                                                                                 | ium c                                                                                                                                                                                                                                                                                                             | of Squares                                                                                                                                                                                                                                                                                                                                                                   | Меа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n Sqi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Model        | 5                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3325 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5321                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 6                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) > F                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C. Total     | 11                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                 | 5.782492                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 001*                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lack Of F    | īt                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Source       | DF                                                                                                                                                                   | Su                                                                                                                                                                                                                                                                                                                | m of Square                                                                                                                                                                                                                                                                                                                                                                  | s M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 3                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0329                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | -                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 178033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rob > F                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Total Error  | 6                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   | 1.619855                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .2875                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ax RSq                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9919                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Paramet      | er Est                                                                                                                                                               | ima                                                                                                                                                                                                                                                                                                               | tes                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Term         | Estin                                                                                                                                                                | nate                                                                                                                                                                                                                                                                                                              | Std Error                                                                                                                                                                                                                                                                                                                                                                    | tΡ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prob>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Intercept    | 80.753                                                                                                                                                               | 472                                                                                                                                                                                                                                                                                                               | 0.210074                                                                                                                                                                                                                                                                                                                                                                     | 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <1           | 0.8818                                                                                                                                                               | 887                                                                                                                                                                                                                                                                                                               | 0.164311                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| X2*X2        | -0.748                                                                                                                                                               | 102                                                                                                                                                                                                                                                                                                               | 0.274376                                                                                                                                                                                                                                                                                                                                                                     | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | RSquare<br>RSquare Adj<br>Root Mean S<br>Mean of Res<br>Observations<br>Analysis<br>Source<br>Model<br>Error<br>C. Total<br>Lack Of Fit<br>Pure Error<br>Total Error | RSquare<br>RSquare Adj<br>Root Mean Square E<br>Mean of Response<br>Observations (or Sur<br>Analysis of Va<br>Source DF S<br>Model 5<br>Error 6<br>C. Total 11<br>Lack Of Fit 3<br>Pure Error 3<br>Total Error 6<br>Parameter Estin<br>Intercept 80.753<br>X1 0.8818<br>X2 0.3937<br>X1*X2 0.2450<br>X1*X1 -1.723 | RSquare Adj<br>Root Mean Square Error<br>Mean of Response<br>Observations (or Sum Wo<br>Analysis of Variar<br>Source DF Sum of<br>Model 5 6<br>Error 6<br>C. Total 11 6<br>Lack Of Fit<br>Source DF Sum<br>Lack Of Fit 3<br>Pure Error 3<br>Total Error 6<br>Parameter Estimate<br>Intercept 80.753472<br>X1 0.8818887<br>X2 0.3937808<br>X1*X2 0.2450047<br>X1*X1 -1.723102 | RSquare         0.9753           RSquare Adj         0.9543           Root Mean Square Error         0.5193           Mean of Response         78.694           Observations (or Sum Wgts)         Analysis of Variance           Source         DF         Sum of Squares           Model         5         64.162636           Error         6         1.619856           C. Total         11         65.782492           Lack Of Fit         3         1.085755           Pure Error         3         0.534100           Total Error         6         1.619855           Parameter Estimates         Intercept         80.753472           Term         Estimate         Std Error           Intercept         80.753472         0.210074           X1         0.8818887         0.164311           X2         0.3937808         0.164311           X1*X1         -1.723102         0.274376 | RSquare       0.975376         RSquare Adj       0.954855         Root Mean Square Error       0.519592         Mean of Response       78.69417         Observations (or Sum Wgts)       12         Analysis of Variance         Source       DF         Model       5         6       1.619856         C. Total       11         6       1.619856         C. Total       11         Ack Of Fit       3         Source       DF         Source       DF | RSquare         0.975376           RSquare Adj         0.954855           Root Mean Square Error         0.519592           Mean of Response         78.69417           Observations (or Sum Wgts)         12           Analysis of Variance           Source         DF           Model         5           6         1.619856           C. Total         11           65.782492           Lack Of Fit         3           Source         DF           Sum of Squar | RSquare       0.975376         RSquare Adj       0.954855         Root Mean Square Error       0.519592         Mean of Response       78.69417         Observations (or Sum Wgts)       12         Analysis of Variance         Source       DF         Source       DF | RSquare       0.975376         RSquare Adj       0.954855         Root Mean Square Error       0.519592         Mean of Response       78.69417         Observations (or Sum Wgts)       12         Analysis of Variance         Source       DF Sum of Squares Mean Square         Model       5       64.162636       12.8325         Fror       6       1.619856       0.2700       Prote         C. Total       11       65.782492       <.00 |

Since the p-value of lack of fit test is large than .05, the model is adequate.

(2) Choose "Contour Profiler" and "Surface Profiler" in "Factor Profiling" by clicking the hot spot aside the "Response Yield":







| Response Surface                      |            |       |           |           |  |  |  |  |
|---------------------------------------|------------|-------|-----------|-----------|--|--|--|--|
| Coef                                  |            |       |           |           |  |  |  |  |
|                                       |            | X1    | X2        | Yield     |  |  |  |  |
| X1                                    | -1.723     | 8102  | 0.2450047 | 0.8818887 |  |  |  |  |
| X2                                    |            |       | -0.748102 | 0.3937808 |  |  |  |  |
| ⇒ s                                   | ▼ Solution |       |           |           |  |  |  |  |
| Va                                    | riable     | Criti | cal Value |           |  |  |  |  |
| ×1                                    |            | 0.    | 2778471   |           |  |  |  |  |
| X2                                    |            | 0.    | 3086843   |           |  |  |  |  |
| Solution is a Maximum                 |            |       |           |           |  |  |  |  |
| Predicted Value at Solution 80.936764 |            |       |           |           |  |  |  |  |

The solution is a maximum. The maximum will be reached at:

X1=.278, X2 =.309

15. Design a Central Composite Design, a Three Level Factorial Design and a Box Behnken design for generating a response surface for yield in a batch reactor system(Scenario 1) where the effect of temperature, termination time and agitation rate are to be investigated. Compare the features of the three designs in terms of the number of runs required.

Solution

Let X1 = Temperature, X2 = Termination time, X3 = Agitation rate and Y = Yield:

(1) CCD. Choose "Response Surface Design" in "DOE".

| OE- Response Surface I                            | Design                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Response Surface De                               | sign                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| Responses                                         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| Add Response 💉 Remove                             | e N Responses                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| Response Name                                     | Goal                                                                                                                                                                                                                                       | Lower Limit                                                                                                                                                                                                                                                                           | Upper Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Importance                                                                                                                                                                                                                                                                                                                                                     |
| Y                                                 | Maximize                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| optional item                                     |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| Factors                                           |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| Add Continuous                                    |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| Remove Selected                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| Name R                                            | tole                                                                                                                                                                                                                                       | Values                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                            | -1                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                |
| <u>⊿</u> X2 (                                     | Iontinuous                                                                                                                                                                                                                                 | -1                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| sponce Surface Design                             |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| sponse Surface Design<br>Specify Factors          |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| Specify Factors                                   | rs. Double click on a facto                                                                                                                                                                                                                | r name or setting                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | rs. Double click on a facto                                                                                                                                                                                                                | r name or setting                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
| Specify Factors<br>becify desired number of facto | rs. Double click on a facto                                                                                                                                                                                                                | r name or setting                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | Response Surface De         Responses         Add Response V         Response Name         Y         optional item         Factors         Add         Continuous         Remove Selected         Name       R         X1       Continuous | Add Response       Remove       N Responses         Response Name       Goal         Y       Maximize         optional item       Goal         Factors       Goal         Add       Continuous         Remove Selected       Name         Name       Role         X1       Continuous | Response Surface Design         Responses         Add Response ♥ Remove       N Responses         Response Name       Goal       Lower Limit         Y       Maximize       .         optional item       Factors       Second       Second         Remove Selected       Role       Values         Name       Role       Values         Image: Name       Role       Values | Response Surface Design         Responses         Add Response       Remove       N Responses         Response Name       Goal       Lower Limit       Upper Limit         Y       Maximize       .       .         optional item       Selected       Values       .         Name       Role       Values       .         X1       Continuous       .       . |

Input factors and continue. Choose CCD-Orthogonal:

| <b>B</b> D | OE- Resp            | ponse Sur   | face Design              |             |             |            |
|------------|---------------------|-------------|--------------------------|-------------|-------------|------------|
| Ŷ          | Respon              | nse Surfa   | ce Design                |             |             |            |
| ÷          | Respon              | ises        |                          |             |             |            |
|            | Add Respo           | onse 🖌 🖡    | Remove N Responses       |             |             |            |
|            |                     | ponse Name  | Goal                     | Lower Limit | Upper Limit | Importance |
|            | Y                   |             | Maximize                 |             |             |            |
|            | optional iti        | em          |                          |             |             |            |
|            |                     |             |                          |             |             |            |
|            |                     |             |                          |             |             |            |
| - 🔶        | Factors             | ;           |                          |             |             |            |
|            | Name                |             | Role                     | Values      |             |            |
|            | <b>/</b> X1         |             | Continuous               | -1          | 1           |            |
|            | <b>4</b> X2         |             | Continuous               | -1          | 1           |            |
|            | ⊿ ХЗ                |             | Continuous               | -1          | 1           |            |
|            |                     |             |                          |             |             |            |
| Dev        | l<br>spopso Sur     | face Design |                          |             |             |            |
|            | actors              | race besign |                          |             |             |            |
|            | Choose a D          | Design      |                          |             |             |            |
| 1          | Number Bl           | lock Center |                          |             |             |            |
| <u> </u>   | Of Runs Si          | ize Points  | Design Type              |             |             |            |
|            | 15                  | 3           | Box-Behnken              |             |             |            |
|            | 16                  | 2           | Central Composite Design |             |             |            |
| 11 -       | 20                  | 6           | CCD-Uniform Precision    |             |             |            |
| 11 -       | 206<br>23           | 6<br>9      | CCD-Orthogonal Blocks    |             |             |            |
| 18 -       | 23<br>optional itei | -           | CCD-Orthogonal           |             |             |            |
|            | <i>урнопа</i> лсы   |             |                          |             |             |            |
|            |                     |             |                          |             |             |            |
| Ĩ          | Continue            |             |                          |             |             |            |
|            | _                   |             |                          |             |             |            |
|            | Back                |             |                          |             |             |            |
|            |                     |             |                          |             |             |            |

Continue. Make the table:

| 🖩 Central Composite Design     |                                  |         |            |            |            |   |          |  |
|--------------------------------|----------------------------------|---------|------------|------------|------------|---|----------|--|
| 💌 Central Composite Desig      | <ul> <li>▼</li> <li>▼</li> </ul> |         |            |            |            |   | <b>▲</b> |  |
| Design Central Composite D     |                                  | Pattern | X1         | X2         | Х3         | Y |          |  |
| ▼Model                         | 1                                | 000     | 0          | 0          | 0          | • |          |  |
|                                | 2                                | -++     | -1         | 1          | 1          | • |          |  |
|                                | 3                                | +++     | 1          | 1          | 1          | • |          |  |
|                                | 4                                | 000     | 0          | 0          | 0          | • |          |  |
|                                | 5                                | +       | -1         | -1         | 1          | • |          |  |
|                                | 6                                | 0a0     | 0          | -1.6680318 | 0          | • |          |  |
| Columns (5/0)                  | 7                                | A00     | 1.66803177 | 0          | 0          | • |          |  |
| 🆺 Pattern 🖉                    | 8                                | 000     | 0          | 0          | 0          | • |          |  |
| 🔺 X1 🗶                         | 9                                | 0A0     | 0          | 1.66803177 | 0          | • |          |  |
| ⊿ x2 <b>米</b><br>⊿ x3 <b>米</b> | 10                               | 000     | 0          | 0          | 0          | • |          |  |
| ⊿ x3 <b>≭</b><br>⊿ y <b>≭</b>  | 11                               | -+-     | -1         | 1          | -1         | • |          |  |
| <b>4</b>   T                   | 12                               | 000     | 0          | 0          | 0          | • |          |  |
|                                | 13                               | a00     | -1.6680318 | 0          | 0          | • |          |  |
|                                | 14                               | +-+     | 1          | -1         | 1          | • |          |  |
|                                | 15                               |         | -1         | -1         | -1         | • |          |  |
|                                | 16                               | ++-     | 1          | 1          | -1         | • |          |  |
| Rows                           | 17                               | 000     | 0          | 0          | 0          | • |          |  |
| All rows 23                    | 18                               | 00a     | 0          | 0          | -1.6680318 | • |          |  |
| Selected 0                     | 19                               | +       | 1          | -1         | -1         | • |          |  |
| Excluded 0                     | 20                               | 000     | 0          | 0          | 0          | • |          |  |
| Hidden 0                       | 21                               | 000     | 0          | 0          | 0          | • |          |  |
| Labelled 0                     | 22                               | 000     | 0          | 0          | 0          | • |          |  |
|                                | 23                               | 00A     | 0          | 0          | 1.66803177 | • |          |  |
|                                |                                  |         |            |            |            |   | <b>_</b> |  |
|                                | 4                                |         |            |            |            |   |          |  |

# (2) 3 level factorial design

Choose "Full Factorial Design" in "DOE":

|          | OE- Full Factorial Desi                                        | gn            |                    |  |          |  |  |  |  |  |  |
|----------|----------------------------------------------------------------|---------------|--------------------|--|----------|--|--|--|--|--|--|
| <b>)</b> | Full Factorial Design                                          |               |                    |  |          |  |  |  |  |  |  |
| - 🔶      | Responses                                                      |               |                    |  |          |  |  |  |  |  |  |
|          | Add Response 🖌 Remov                                           | e N Responses |                    |  |          |  |  |  |  |  |  |
|          | Response Name Goal Lower Limit Upper Limit Importance          |               |                    |  |          |  |  |  |  |  |  |
|          | Y<br>optional item                                             | Maximize      |                    |  | <u>.</u> |  |  |  |  |  |  |
|          |                                                                |               |                    |  |          |  |  |  |  |  |  |
|          |                                                                |               |                    |  |          |  |  |  |  |  |  |
|          | Factors                                                        |               |                    |  |          |  |  |  |  |  |  |
|          | Continuous 🗸 Categoric                                         | al 🗸 Remove   |                    |  |          |  |  |  |  |  |  |
|          | Name                                                           | Role          | Values             |  |          |  |  |  |  |  |  |
|          |                                                                |               |                    |  |          |  |  |  |  |  |  |
|          |                                                                |               |                    |  |          |  |  |  |  |  |  |
|          |                                                                |               |                    |  |          |  |  |  |  |  |  |
|          | l Factorial Design                                             |               |                    |  |          |  |  |  |  |  |  |
|          | Specify Factors                                                |               |                    |  |          |  |  |  |  |  |  |
|          | dd a Continuous or Categoria<br>n a factor name or level to ea |               | tton, Double click |  |          |  |  |  |  |  |  |
|          | Continue                                                       |               |                    |  |          |  |  |  |  |  |  |
|          |                                                                |               |                    |  |          |  |  |  |  |  |  |

| 腸 3x3x3 Factorial      |     |         |    |    |    |   |   |
|------------------------|-----|---------|----|----|----|---|---|
| Sx3x3 Factorial        | • • |         |    |    |    |   | A |
| Design 3x3x3 Factorial |     | Pattern | X1 | X2 | XЗ | Y |   |
| ▼Model                 | 1   | 122     | 1  | 2  | 2  | • |   |
|                        | 2   | 312     | 3  | 1  | 2  | • |   |
|                        | 3   | 113     | 1  | 1  | 3  | • |   |
|                        | 4   | 321     | 3  | 2  | 1  | • |   |
|                        | 5   | 111     | 1  | 1  | 1  | • |   |
|                        | 6   | 133     | 1  | 3  | 3  | • |   |
|                        | 7   | 222     | 2  | 2  | 2  | • |   |
| Columns (5/0)          | 8   | 332     | 3  | 3  | 2  | • |   |
| III. Pattern 🖉         | 9   | 333     | 3  | 3  | 3  | • |   |
| 🖌 X1 🗱                 | 10  | 212     | 2  | 1  | 2  | • |   |
| ⊿ X2 苯                 | 11  | 311     | 3  | 1  | 1  | • |   |
| 🚄 X3 苯                 | 12  | 213     | 2  | 1  | 3  | • |   |
| 🚄 Y 🗶                  | 13  | 331     | 3  | 3  | 1  | • |   |
|                        | 14  | 323     | 3  | 2  | 3  | • |   |
|                        | 15  | 121     | 1  | 2  | 1  | • |   |
|                        | 16  | 231     | 2  | 3  | 1  | • |   |
|                        | 17  | 223     | 2  | 2  | 3  | • |   |
|                        | 18  | 211     | 2  | 1  | 1  | • |   |
|                        | 19  | 123     | 1  | 2  | 3  | • |   |
| Rows                   | 20  | 233     | 2  | 3  | 3  | • |   |
| All rows 27            | 21  | 313     | 3  | 1  | 3  | • |   |
| Selected 0             | 22  | 132     | 1  | 3  | 2  | • |   |
| Excluded 0             | 23  | 131     | 1  | 3  | 1  | • |   |
| Hidden 0               | 24  | 221     | 2  | 2  | 1  | • |   |
| Labelled 0             | 25  | 232     | 2  | 3  | 2  | • |   |
|                        | 26  | 112     | 1  | 1  | 2  | • |   |
|                        | 27  | 322     | 3  | 2  | 2  | • |   |
|                        |     |         |    |    |    |   |   |
|                        | •   |         |    |    |    |   |   |

### (3) Box- Behnken Design:

| 🛗 Box-Behnken           |     |         |    |    |    |   |  |
|-------------------------|-----|---------|----|----|----|---|--|
| 💌 Box-Behnken           | • • |         |    |    |    |   |  |
| Design Box-Behnken      |     | Pattern | X1 | X2 | X3 | Y |  |
| Model                   | 1   | 0       | -1 | -1 | 0  | • |  |
|                         | 2   | -+0     | -1 | 1  | 0  | • |  |
|                         | 3   | +-0     | 1  | -1 | 0  | • |  |
|                         | 4   | ++0     | 1  | 1  | 0  | • |  |
|                         | 5   | 0       | 0  | -1 | -1 | • |  |
| Columns (5/0)           | 6   | 0-+     | 0  | -1 | 1  | • |  |
| 🆺 Pattern 🖉             | 7   | 0+-     | 0  | 1  | -1 | • |  |
| ▲ X1 ★                  | 8   | 0++     | 0  | 1  | 1  | • |  |
| ⊿ x2 ¥<br>⊿ x3 ¥        | 9   | -0-     | -1 | 0  | -1 | • |  |
| ⊿ ∧ 3 ≁<br>⊿ Y <b>≭</b> | 10  | +0-     | 1  | 0  | -1 | • |  |
| - 1 m                   | 11  | -0+     | -1 | 0  | 1  | • |  |
|                         | 12  | +0+     | 1  | 0  | 1  | • |  |
|                         | 13  | 000     | 0  | 0  | 0  | • |  |
|                         | 14  | 000     | 0  | 0  | 0  | • |  |
|                         | 15  | 000     | 0  | 0  | 0  | • |  |

Compare these three designs, the Box-Behnken has the minimum runs.