
C. Wassgren, Purdue University 1

DEM Modeling:  Lecture 11

Coarse Contact Detection
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Coarse Contact Detection

• Contact detection is typically the most time consuming 

part of a soft-particle DEM simulation

• Contact between particles is often divided into two steps:

– coarse contact detection (aka neighbor search)

– fine contact detection

From Mio et al. (1995)
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Brute Force

• Assume a system contains N particles

• To determine if contact occurs between any two particles

– could check for contacts between all possible particle pairs:

• particle 1:  N-1 contact checks

• particle 2: N-2 contact checks

• particle N-1: 1 contact check

• particle N: 0 contact checks

• total # of contact checks:  

(N-1)+(N-2) +2+ 1 = N(N-1)/2 ~ O(N2)

– aka “naïve” contact detection

• There are more efficient ways of checking for contacts!

– neighboring-cell contact detection scheme

– nearest-neighbor contact detection scheme

– sweep and prune
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• divide the workspace into a grid of cells

• for each cell, maintain a list of the particles 

contained within that cell

• for a given particle, only check for contact 

with other particles in its own cell and 

neighboring cells

• cell size may be smaller than particle size, 

a single particle may occupy multiple cells 

cell (i, j)
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Neighboring Cell 
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For particle 1, in cell (i, j), check 

for contact against:
cell (i-1, j-1): particle 7

cell (i-1, j):  particles 2 and 9

cell (i-1, j+1): -

cell (i, j-1): -

cell (i, j): particle 3

cell (i, j+1): particle 4

cell (i+1, j-1): particle 8

cell (i+1, j): particle 5

cell (i+1, j+1): -

double linked lists 

are often used to 

maintain the cell lists
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Neighboring Cell…

• Cell size optimization

– Mio et al. (2005)

– optimal λ ≡ c/r ≈ 1.5 with λ↑
as solid fraction ↓

– optimal cell size has 0.7 –

0.8 particles per cell

– optimum is insensitive even 

when a range of particle 

sizes is used

– analytical derivation is 

presented supporting 

numerical findings

*Here, volume fraction means solid fraction.

*

2r
c

λ = c/r

searching 

many cells
fine contact checks 

with many particles
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Neighboring Cell…

λ = 1.33
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= avg. # of fine contact 

checks for a particle

CPU SC SC CC CCL n nκ κ= +

κSC = CPU load for searching cells

κCC = CPU load for fine contact checks

These CPU loads will vary depending upon 

algorithm and implementation specifics.  Mio et 

al. (2005) found that κCC/κSC = 10.47

CPU load

From Mio et al. (2005)

(α, β, γ) = 1.14, 2.65, 0.80)
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Neighboring Cell…
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From Mio et al. (2005)
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Neighboring Cell…

• Can also use bounding spheres or 

bounding boxes for non-spherical particles 

and then implement the neighboring cell 

algorithm
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Neighboring Cell…

• Zhao et al. (2006) empirically examined optimal cell size using polygonal particles.

• The optimum ratio of cell size to median bounding sphere diameter by volume is:  

S/D’50 ≈ 1.5.
• Twice the optimal size as what was found by Mio et al. (2005)!

S

D
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Neighboring Cell…

From Zhao et al. (2006) 

• Shape has little effect on optimal cell size.

• (Increasing shape complexity results in increasing run time.)
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Neighboring Cell…

From Zhao et al. (2006)

neighboring cell contact detection algorithm 

is insensitive to particle size ratio 

size ratio ≡ smallest:largest bounding diameters
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Neighboring Cell…

• Assuming a constant number of particles 

per cell, c (in 3D with one particle per cell, 

c = 26)

– particle 1: c checks

– particle 2: c checks

– particle N-1: 1 check, at most

– particle N: 0 checks

– total # of contact checks:

(N – c)c + (c – 1) + (c – 2) + … + 1 ~ O(N)
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Neighboring Cell…

• The additional bookkeeping of maintaining neighbor lists 

is computationally less costly than performing an N2

brute force check

• For large particle size differences, the neighboring cell 

algorithm degenerates to the brute force method if the 

cell size is chosen to be ≥ particle size
– for cell sizes < particle size, the algorithm is slow since many

cells need to be checked, but it’s not as bad as an N2 check
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1

7

8

3

5

• define a neighborhood for each particle

• maintain a list of each particle’s neighbors

• only check for contacts between neighbors

• periodically update particle neighbor lists so 

that particles outside the neighborhood will 

not contact the target particle without first 

becoming a neighbor

- periodic updates are typically an N2 brute 

force contact search

neighbor list for particle 1:

- particle 3

- particle 5

- particle 7

- particle 8

Rnbr

Nearest Neighbor 
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• neighborhood radius needs to be large enough so 

that a particle moves into the neighborhood before 

contacting the target particle

• as Rnbr↑ ⇒ update frequency ↓, but # neighbors ↑
• update the neighbor lists when the total distance 

any one particle could move relative to any other 

particle is equal to the neighborhood radius

( )( )
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nbrmax
2

t

t

t t R∆ ≥∑ xɺ

Nearest Neighbor…
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where  neighborhood radius

           time of the previous neighborhood update

          max speed of any particle at the given time

            simulation time step

R
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≡

≡
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Nearest Neighbor…

• Assuming a constant number of particles per 

neighborhood, c

– particle 1: c checks

– particle 2: c checks

– particle N-1: 1 check, at most

– particle N: 0 checks

– total # of contact checks:

(N – c)c + (c – 1) + (c – 2) + … + 1 ~ O(N)
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Nearest Neighbor…

• The additional bookkeeping of maintaining neighbor lists 

is computationally less costly than performing an N2

brute force check

• Nearest-neighbor becomes less efficient as the 

frequency of updating the neighbor lists increases

– e.g., when particles move at large speeds

– ⇒ nearest-neighbor technique is most efficient for 

quasi-static assemblies

• Optimal cell size and neighborhood size have not been 

studied

– (left as an exercise)



C. Wassgren, Purdue University 18

Sweep and Prune 

• aka bounding box method, spatial sort

• each particle has a bounding box with edges aligned 

with the global axes

• if the bounding boxes don’t overlap in all three 

coordinate directions, then the particles will not overlap

– only check for contact between particles with overlapping 

bounding boxes 

check for contact



C. Wassgren, Purdue University 19

Step 1: Create (axis aligned) bounding boxes for each particle. Note 

the projected coordinates of the box extrema on each axis. 

Sweep and Prune…
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Step 2: Create sorted lists of the bounding box segments (endpoint pairs) 

in each projected dimension. Retaining the ordering from the last frame 

makes this a fast process since the ordering generally won’t change much 

between simulation time steps (known as “coherence”).

Sweep and Prune…

4L

X
5U

Y

1

2

4

5

3

1U

1L
2U

2L

3U

3L
5U

5L

5L 4U4L3L1L 2L3U1U 2U

4U

x list

1 L

3 L

1 U

3 U

2 L

2 U

4 L

5 L

5 U

4 U

y list

5 L

4 L

3 L

5 U

3 U

2 L

4 U

1 L

2 U

1 U



C. Wassgren, Purdue University 21

Step 3: Sweep through each list, tracking which boxes overlap.  Contacts 

can only exist if the bounding boxes overlap in all axis directions.

Sweep and Prune…

x list
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4 & 5check for contact:  4 & 5
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Sweep and Prune…

• O(N) achieved by assuming spatial coherence: since the 
segments move very little, the lists are always “almost-
sorted,” and only linear time is required to update them.

• Optimization: use insertion sort for the lists, “sweep”
segments as they are sorted (combine steps 2 and 3). 

• Any object shape can be used, as long as a bounding 
box encloses it.
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Sweep and Prune…

initial state:

• All segment list sorting involves swaps of adjacent endpoints 
(step 2).  Use this information to accomplish step 3.

• Test for swap type to update collision table:
– Swap ] [ to [ ] : new overlap for pair

– Swap [ ] to ] [ : end overlap for pair

– Otherwise do nothing ([ [ or ] ])

next frame:

[

[ ] ][

] ][

new overlap!

[ [

[ [

] ]

] ]

old overlap
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Sweep and Prune…

• Performs well when compared with neighboring cell, but 
is more complex to implement

• Advantages
– handles poly-sized particle distributions without degenerating

– deals with high density systems more efficiently

• Disadvantages
– no advantage for simple systems (low density, mono-sized 
spheres)

– more difficult to implement, especially for moving periodic 
boundaries

– oblong particles difficult to bound efficiently

• DESS (Perkins and Williams, 2001)
– aka sweep and prune 

– O(N2) for an insertion sort, O(NlnN) for heap sort
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Summary

• Most computation time is spent in coarse contact 
detection

• Do NOT use brute force except for systems containing 
only tens of particles at most
– (unless you like to waste time and electricity)

• Three common methods:  neighboring cell, nearest 
neighbor, sweep and prune

• The “best” method depends upon the system under 
investigation
– quasi-static systems:  nearest neighbor

– systems with large size differences:  sweep and prune

– the “work horse”:  neighboring cell
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