
C. Wassgren, Purdue University 1

DEM Modeling: Lecture 11

Coarse Contact Detection

C. Wassgren, Purdue University 2

Coarse Contact Detection

• Contact detection is typically the most time consuming

part of a soft-particle DEM simulation

• Contact between particles is often divided into two steps:

– coarse contact detection (aka neighbor search)

– fine contact detection

From Mio et al. (1995)

C. Wassgren, Purdue University 3

Brute Force

• Assume a system contains N particles

• To determine if contact occurs between any two particles

– could check for contacts between all possible particle pairs:

• particle 1: N-1 contact checks

• particle 2: N-2 contact checks

• particle N-1: 1 contact check

• particle N: 0 contact checks

• total # of contact checks:

(N-1)+(N-2) +2+ 1 = N(N-1)/2 ~ O(N2)

– aka “naïve” contact detection

• There are more efficient ways of checking for contacts!

– neighboring-cell contact detection scheme

– nearest-neighbor contact detection scheme

– sweep and prune

C. Wassgren, Purdue University 4

• divide the workspace into a grid of cells

• for each cell, maintain a list of the particles

contained within that cell

• for a given particle, only check for contact

with other particles in its own cell and

neighboring cells

• cell size may be smaller than particle size,

a single particle may occupy multiple cells

cell (i, j)

particle 1

particle 3

Neighboring Cell

7

8

3
i

j

1

5

4

9

2

j+1j-1

i+1

i-1

For particle 1, in cell (i, j), check

for contact against:
cell (i-1, j-1): particle 7

cell (i-1, j): particles 2 and 9

cell (i-1, j+1): -

cell (i, j-1): -

cell (i, j): particle 3

cell (i, j+1): particle 4

cell (i+1, j-1): particle 8

cell (i+1, j): particle 5

cell (i+1, j+1): -

double linked lists

are often used to

maintain the cell lists

C. Wassgren, Purdue University 5

Neighboring Cell…

• Cell size optimization

– Mio et al. (2005)

– optimal λ ≡ c/r ≈ 1.5 with λ↑
as solid fraction ↓

– optimal cell size has 0.7 –

0.8 particles per cell

– optimum is insensitive even

when a range of particle

sizes is used

– analytical derivation is

presented supporting

numerical findings

*Here, volume fraction means solid fraction.

*

2r
c

λ = c/r

searching

many cells
fine contact checks

with many particles

C. Wassgren, Purdue University 6

Neighboring Cell…

λ = 1.33
nS = 4

λ = 1.0
nS = 5

λ = 2.0
nS = 3 λ = 4.0

nS = 2

3

SC S
n n=

()3C SC
V n rλ=

of searched cells

volume of searched cells

C C

WS

N
n V

V
= volume of particles in

searched cells (N = total # of

particles, VWS = volume of

workspace)

1

2

C

CC

n
n

−
= avg. # of fine contact

checks for a particle

CPU SC SC CC CCL n nκ κ= +

κSC = CPU load for searching cells

κCC = CPU load for fine contact checks

These CPU loads will vary depending upon

algorithm and implementation specifics. Mio et

al. (2005) found that κCC/κSC = 10.47

CPU load

From Mio et al. (2005)

(α, β, γ) = 1.14, 2.65, 0.80)

C. Wassgren, Purdue University 7

Neighboring Cell…

()33 1

2
1 where exp

CPU SC S CC S S

WS

N
L n n r n

V

β
κ κ λ α

λ γ
   

= + − =   +  

From Mio et al. (2005)

C. Wassgren, Purdue University 8

Neighboring Cell…

• Can also use bounding spheres or

bounding boxes for non-spherical particles

and then implement the neighboring cell

algorithm

C. Wassgren, Purdue University 9

Neighboring Cell…

• Zhao et al. (2006) empirically examined optimal cell size using polygonal particles.

• The optimum ratio of cell size to median bounding sphere diameter by volume is:

S/D’50 ≈ 1.5.
• Twice the optimal size as what was found by Mio et al. (2005)!

S

D

C. Wassgren, Purdue University 10

Neighboring Cell…

From Zhao et al. (2006)

• Shape has little effect on optimal cell size.

• (Increasing shape complexity results in increasing run time.)

C. Wassgren, Purdue University 11

Neighboring Cell…

From Zhao et al. (2006)

neighboring cell contact detection algorithm

is insensitive to particle size ratio

size ratio ≡ smallest:largest bounding diameters

C. Wassgren, Purdue University 12

Neighboring Cell…

• Assuming a constant number of particles

per cell, c (in 3D with one particle per cell,

c = 26)

– particle 1: c checks

– particle 2: c checks

– particle N-1: 1 check, at most

– particle N: 0 checks

– total # of contact checks:

(N – c)c + (c – 1) + (c – 2) + … + 1 ~ O(N)

C. Wassgren, Purdue University 13

Neighboring Cell…

• The additional bookkeeping of maintaining neighbor lists

is computationally less costly than performing an N2

brute force check

• For large particle size differences, the neighboring cell

algorithm degenerates to the brute force method if the

cell size is chosen to be ≥ particle size
– for cell sizes < particle size, the algorithm is slow since many

cells need to be checked, but it’s not as bad as an N2 check

C. Wassgren, Purdue University 14

1

7

8

3

5

• define a neighborhood for each particle

• maintain a list of each particle’s neighbors

• only check for contacts between neighbors

• periodically update particle neighbor lists so

that particles outside the neighborhood will

not contact the target particle without first

becoming a neighbor

- periodic updates are typically an N2 brute

force contact search

neighbor list for particle 1:

- particle 3

- particle 5

- particle 7

- particle 8

Rnbr

Nearest Neighbor

C. Wassgren, Purdue University 15

• neighborhood radius needs to be large enough so

that a particle moves into the neighborhood before

contacting the target particle

• as Rnbr↑ ⇒ update frequency ↓, but # neighbors ↑
• update the neighbor lists when the total distance

any one particle could move relative to any other

particle is equal to the neighborhood radius

()()
prev

nbrmax
2

t

t

t t R∆ ≥∑ xɺ

Nearest Neighbor…

Rnbrri

rj

()nbr i j
R r r> +

()

nbr

prev

max

where neighborhood radius

 time of the previous neighborhood update

 max speed of any particle at the given time

 simulation time step

R

t

t

t

≡

≡

≡

∆ ≡

xɺ

C. Wassgren, Purdue University 16

Nearest Neighbor…

• Assuming a constant number of particles per

neighborhood, c

– particle 1: c checks

– particle 2: c checks

– particle N-1: 1 check, at most

– particle N: 0 checks

– total # of contact checks:

(N – c)c + (c – 1) + (c – 2) + … + 1 ~ O(N)

C. Wassgren, Purdue University 17

Nearest Neighbor…

• The additional bookkeeping of maintaining neighbor lists

is computationally less costly than performing an N2

brute force check

• Nearest-neighbor becomes less efficient as the

frequency of updating the neighbor lists increases

– e.g., when particles move at large speeds

– ⇒ nearest-neighbor technique is most efficient for

quasi-static assemblies

• Optimal cell size and neighborhood size have not been

studied

– (left as an exercise)

C. Wassgren, Purdue University 18

Sweep and Prune

• aka bounding box method, spatial sort

• each particle has a bounding box with edges aligned

with the global axes

• if the bounding boxes don’t overlap in all three

coordinate directions, then the particles will not overlap

– only check for contact between particles with overlapping

bounding boxes

check for contact

C. Wassgren, Purdue University 19

Step 1: Create (axis aligned) bounding boxes for each particle. Note

the projected coordinates of the box extrema on each axis.

Sweep and Prune…

4L

X
5U

Y

1

2

4

5

3

1U

1L
2U

2L

3U

3L
5U

5L

5L 4U4L3L1L 2L3U1U 2U

4U

C. Wassgren, Purdue University 20

Step 2: Create sorted lists of the bounding box segments (endpoint pairs)

in each projected dimension. Retaining the ordering from the last frame

makes this a fast process since the ordering generally won’t change much

between simulation time steps (known as “coherence”).

Sweep and Prune…

4L

X
5U

Y

1

2

4

5

3

1U

1L
2U

2L

3U

3L
5U

5L

5L 4U4L3L1L 2L3U1U 2U

4U

x list

1 L

3 L

1 U

3 U

2 L

2 U

4 L

5 L

5 U

4 U

y list

5 L

4 L

3 L

5 U

3 U

2 L

4 U

1 L

2 U

1 U

C. Wassgren, Purdue University 21

Step 3: Sweep through each list, tracking which boxes overlap. Contacts

can only exist if the bounding boxes overlap in all axis directions.

Sweep and Prune…

x list

1 L

3 L

1 U

3 U

2 L

2 U

4 L

5 L

5 U

4 U
4L

X
5U

Y

1

2

4

5

3

1U

1L
2U

2L

3U

3L
5U

5L

5L 4U4L3L1L 2L3U1U 2U

4U

y list

5 L

4 L

3 L

5 U

3 U

2 L

4 U

1 L

2 U

1 U

BB overlap

1 & 3

4 & 5

BB overlap

1 & 2

2 & 4

3 & 4

3 & 5

4 & 5check for contact: 4 & 5

C. Wassgren, Purdue University 22

Sweep and Prune…

• O(N) achieved by assuming spatial coherence: since the
segments move very little, the lists are always “almost-
sorted,” and only linear time is required to update them.

• Optimization: use insertion sort for the lists, “sweep”
segments as they are sorted (combine steps 2 and 3).

• Any object shape can be used, as long as a bounding
box encloses it.

C. Wassgren, Purdue University 23

Sweep and Prune…

initial state:

• All segment list sorting involves swaps of adjacent endpoints
(step 2). Use this information to accomplish step 3.

• Test for swap type to update collision table:
– Swap] [to [] : new overlap for pair

– Swap [] to] [: end overlap for pair

– Otherwise do nothing ([[or]])

next frame:

[

[]][

]][

new overlap!

[[

[[

]]

]]

old overlap

C. Wassgren, Purdue University 24

Sweep and Prune…

• Performs well when compared with neighboring cell, but
is more complex to implement

• Advantages
– handles poly-sized particle distributions without degenerating

– deals with high density systems more efficiently

• Disadvantages
– no advantage for simple systems (low density, mono-sized
spheres)

– more difficult to implement, especially for moving periodic
boundaries

– oblong particles difficult to bound efficiently

• DESS (Perkins and Williams, 2001)
– aka sweep and prune

– O(N2) for an insertion sort, O(NlnN) for heap sort

C. Wassgren, Purdue University 25

Summary

• Most computation time is spent in coarse contact
detection

• Do NOT use brute force except for systems containing
only tens of particles at most
– (unless you like to waste time and electricity)

• Three common methods: neighboring cell, nearest
neighbor, sweep and prune

• The “best” method depends upon the system under
investigation
– quasi-static systems: nearest neighbor

– systems with large size differences: sweep and prune

– the “work horse”: neighboring cell

C. Wassgren, Purdue University 26

References

• Allen, M.P. and Tildesley, 1989, Computer Simulation of Liquids, Oxford University Press, New
York, pp. 149 – 152.

• Cohen, Lin, Manocha, Ponamgi, 1995, “I-COLLIDE: An interactive and exact collision detection
system for large-scale environments,” in Proceedings of the 1995 Symposium on interactive 3D
Graphics, SI3D '95.

• Gavrilova, Rokne, Gavrilov, Vinogradov, 2002, “Optimization techniques in an event-driven
simulation of a shaker ball mill,” Lecture Notes in Computer Science, Vol. 2331.

• Mio, H., Shimosaka, A., Shirakawa, Y., and Hidaka, J., 2005, “Optimum cell size for contact
detection in the algorithm of the discrete element method,” Journal of Chemical Engineering of
Japan, Vol. 38, No. 12, pp. 969 – 975.

• Munjiza, A. and Andrews, K.R.F., 1998, “NBS contact detection algorithm for bodies of similar
size,” International Journal for Numerical Methods in Engineering, Vol. 43, pp. 131 – 149.

• Perkins, E. and Williams, J.R., 2001, “A fast contact detection algorithm insensitive to object
sizes,” Engineering Computations, Vol. 18, No. 1/2, pp. 48 – 61.

• Vemuri, B.C., Chen, L., Vu-Quoc, L., Zhang, X., and Walton, O., 1998, “Efficient and accurate
collision detection for granular flow simulation,” Graphical Models and Image Processing, Vol. 60,
pp. 403 – 422.

• Williams, J.R. and O’Connor R., 1995, “A linear complexity intersection algorithm for discrete
element simulation of arbitrary geometries,” Engineering Computations, Vol. 12, pp. 185 – 201.

• Zhao, D., Nezami, E.G., Hashash, Y.M.A., and Ghaboussi, J., 2006, “Three-dimensional discrete
element simulation for granular materials,” Engineering Computations, Vol. 23, No. 7, pp. 749 –
770.

