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DEM Modeling:  Lecture 09

Tangential Contact Force Models
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Some Preliminaries

• Most models assume that the normal contact force is 

independent of the tangential contact force, but the 

tangential contact force is dependent on the normal 

contact force.

• Tangential direction

– perpendicular to unit normal and points in the direction of the 

velocity of particle 2 relative to particle 1 at the contact point
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ŝ

1 2



C. Wassgren, Purdue University 3

Some Preliminaries…

• Tangential velocity, 

• Total tangential displacement, δS

where t0 is the time when the two particles first came into 
contact and t is the current time
– the unit tangential direction may change during the contact
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Some Preliminaries…

• Tangential forces are attributed to 
surface friction between particles.  

• Friction is well modeled using 
Coulomb’s Law of Friction,

where µs is a static friction 
coefficient and µk is a kinetic (or 
sliding) friction coefficient

• For low shear forces there is no
relative motion (stick)

• For high shear forces there is
relative motion (slip)
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Some Contact Mechanics

• Hertzian contact theory predicts 

an elliptical distribution of 

normal tractions over the 

contact region.

• Coulombic friction says shear 

tractions are proportional to 

normal tractions.

– varying normal forces mean 

that some locations may slip 

while others stick

slipstick

From Mindlin and Deresiewicz (1953) From Vu-Quoc and Zhang (1999)

Sticking regions 

result in particle 

deformation
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Some Contact Mechanics…

• Mindlin (1949)
– tangential stiffness is constant for no-slip

– shear tractions are singular at the edges of the contact region

– non-linear stiffness for constant normal load and monotonically 
increasing tangential load

• Mindlin and Deresiewicz (1953)
– hysteretic non-linear stiffness for constant oblique loading

– continuous shear tractions with slip at contact edges

• Maw et al. (1976)
– discretize contact region into annuli which are independently 

evaluated for slip 

• Vu-Quoc et al. (1999)
– many special cases (loading histories) of Mindlin and 

Deresiewicz (1953)
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General Tangential Force Model

• In general, tangential force 
models incorporate three 
elements
– spring (elastic)

– dashpot (damping)

– slider (friction)

• The spring constant is may be 
hysteretic and/or non-linear.

• The contact model parameters 
will be a function of both 
interacting materials.

δN

δS

kS

νS

µ

1

2

ŝ
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Simple Coulomb Sliding
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• Widely used

• Simple model to implement

• Only incorporates sliding friction, does not 

account for tangential deformation ⇒ no 

velocity reversal

• Force is discontinuous at  

• due to dependence on

• Oscillates sign as                rather than FS → 0.

• oscillation in force usually has minimal 

effect since the force averages to zero 

over time
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Friction Values

• Estimates of the sliding friction coefficient for various materials.

materials
1 µµµµ Reference

soda lime glass / soda lime glass 0.092 ± 0.006 Foerster et al . (1994)

"fresh" glass / "fresh" glass 0.048 ± 0.006 Lorenz et al . (1997)

"spent" glass / "spent" glass 0.177 ± 0.020 Lorenz et al . (1997)

"spent" glass / "spent" glass (stationary) 0.126 ± 0.014 Lorenz et al . (1997)

cellulose acetate / cellulose acetate 0.25 ± 0.02 Foerster et al . (1994)

cellulose acetate / cellulose acetate 0.22 - 0.33 Mullier et al . (1991)

nylon / nylon 0.175 ± 0.1 Labous et al . (1997)

acrylic / acrylic 0.096 ± 0.006 Lorenz et al . (1997)

polystyrene / polystyrene 0.189 ± 0.009 Lorenz et al . (1997)

stainless steel / stainless steel 0.099 ± 0.008 Lorenz et al . (1997)

acrylic / aluminum plate 0.14 Mullier et al . (1991)

radish seeds / aluminum plate 0.19 Mullier et al . (1991)

"fresh" glass / aluminum plate 0.131 ± 0.007 Lorenz et al . (1997)

"spent" glass / aluminum plate 0.126 ± 0.009 Lorenz et al . (1997)

glass plate / glass plate 0.4 Beare and Bowden (1935)

glass plate / nickel plate 0.56 Beare and Bowden (1935)

glass plate / carbon plate 0.18 Beare and Bowden (1935)

1
interacting spheres unless otherwise noted
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Viscous Damping

δN

δS
,on 1

ˆ
S ssν=F sɺ

νS

ŝ
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• Not widely used

• Simple model to implement

• Model is physically justified for lubricated contacts

• No dependence on FN
• No tangential deformation ⇒ no velocity reversal

• Force is continuous at 

• Poor behavior for grazing impacts since no 

dependence on normal force
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Viscous Damping 

with Sliding Friction

δN

δS ( ),on 1
ˆmin ,S S Nsν µ=F F sɺ

νS

• Not widely used

• Simple model to implement

• Model is most appropriate for lubricated contacts 

(refer to Ghaisas et al. (2004) for example)

• No tangential deformation ⇒ no velocity reversal

• Force is continuous at 
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Linear Damped Spring in Series with 

a Sliding Friction Element

( ), on 1
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• Widely used

• Moderately difficult model to implement

• Does include tangential stiffness ⇒ possible to 

have velocity reversal

• Dynamics of impact are governed by the ratio of 

the tangential to normal impact stiffnesses

- the normal spring sets the contact duration 

while the tangential response is a function 

of the tangential spring stiffness

• If the tangential stiffness is large and the sliding 

friction coefficient is small, then the sliding 

friction element dominates during most of the 

contact.

2
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Linear Damped Spring in Series with 

a Sliding Friction Element…

• When the sliding friction element is active, the spring 

extension, δS, is set to a value such that the spring force 

matches the sliding friction force.

– the spring force will never exceed the sliding friction force since 

the spring will extend up to the point of slipping
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Linear Damped Spring in Series with 

a Sliding Friction Element…

• Consider the dynamics of a rotating, spherical particle colliding with 

a wall.  Constrain the translational motion of the particle to only 

move in the vertical direction.  Model the normal and tangential

forces using linear springs with different spring constants.
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Linear Damped Spring in Series with 

a Sliding Friction Element…

N

m
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π=• Contact duration is:

• Angle and rotational speed at the end of the contact:
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Linear Damped Spring in Series with 

a Sliding Friction Element…

• From the elastic solid mechanics analysis of Mindlin (1949), the 
stiffness ratio should be:

• Cundall and Strack (1979) report that the dynamics of a densely 
packed, quasi-statically sheared system…

– are relatively insensitive to the stiffness ratio for small friction 
coefficients since sliding friction dominates through most of the contact

– are sensitive to the stiffness ratio when the friction coefficient is large

– larger values of kS/kN result in larger shear stresses since more of the 
load can be carried in the tangential contact direction
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Linear Damped Spring in Series with 

a Sliding Friction Element…

• Cundall and Strack (1979) set (in an ad-hoc fashion) the 

tangential damping coefficient to be proportional to the 

tangential stiffness

– didn’t attempt to relate β to physical parameters

– didn’t matter for them since they studied quasi-static systems; 

the damping only changed the rate at which the system came to 

rest

• It is not uncommon to set νS = 0.

S Skν β=
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Linear Damped Spring in Series with 

a Sliding Friction Element…

• Tsuji et al. (1992) used a tangential stiffness derived 
analytically from the no slip solution of Mindlin (1949)

– Their tangential damping coefficient is set equal to the normal 
damping coefficient, which is given by

where α is an empirically determined constant

– derived assuming a damped Hertzian normal spring force and 
constant normal coefficient of restitution
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Incrementally Slipping Friction
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ŝ

n̂

• primed (‘) quantities indicate value at previous time step

• asterisked (*) quantities indicate value at last direction 

reversal

• If FN changes during contact, then F*S,new = 

F*S,old*(FN,new/FN,old)

2

1



C. Wassgren, Purdue University 21

Incrementally Slipping Friction…

a:  initial loading

b:  direction reversal

c: direction reversal

d: slipping

(figure assumes constant 

normal force)

From Walton and Braun (1986)
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Incrementally Slipping Friction…

• Common, but not as ubiquitous as linear spring with sliding friction

• Most difficult model to implement of the ones presented so far – need to 
remember contact history 

• Variable tangential stiffness

• Is possible to have velocity reversal

• Approximates Mindlin and Deresiewicz’s (1953) solid mechanics model for 
tangential interactions

• Assumes that the normal force remains constant between time steps 
(justified for a gradually changing normal force)

• Matches experiments of Foerster et al. (1994) slightly better than Cundall-
Strack model.

• Extension from 2-D to 3-D case is complicated by the need for a definition 
of “direction reversal”.

– more detailed notes on the implementation of this model are available in 
Walton (1993)

• Walton and Braun (1986) observed that the stress and velocity 
measurements in their 2D Couette flow simulations were not sensitive to the 
value of kS

0/kN over the range 2/3 < kS
0/kN < 1. 
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From Foerster et al. (1994)
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sliding

friction
(µ = 0.15, 0.25)

viscous 

damping w/ 

sliding friction
(µ = 0.25; 

νS = 3, 20 kg/s)

incrementally 

slipping friction
(k0

S/kN = 2/3, 1/3; 

µ = 0.25)

linear spring 

w/ sliding 

friction
(kS/kN = 2/7,1/5; 

µ = 0.25)

viscous 

damping
(νS = 2, 20 kg/s)

Comparisons

From Schäfer et al. (1996)

should have 

linear segments

should be linear
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Comparisons:  Sliding Friction

Two regimes are 

observed:

1. Stick regime for small 

ψi where particles roll 

against each other and 

tangential velocity is 

slowed to zero

2. Sliding regime for larger 

ψi where a finite, but 

slower tangential 

velocity results

3. Both regimes have 

constant slope, friction 

coefficient dictates 

transition between 

regimes

µ = 
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Comparisons:  Viscous Damping

1. There is no stick 

regime, i.e. no rolling.

2. All curves have 

constant slope, i.e.

model results in a 

constant tangential 

coefficient of restitution

3. Damping coefficient 

dictates slope

νS = 
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Comparisons:  

Linear Spring w/ Sliding Friction

ψf

ψi

1. All results are shown for 

µ = 0.25

2. Tangential stiffness 

allows for velocity 

reversal

3. Friction coefficient 

dictates ψi value where 

direction reversal occurs

4. Tangential stiffness / 

normal stiffness ratio 

dictates the magnitude of 

the direction reversal for 

low ψi impacts.

kS/kN = 2/7

kS/kN = 1/5

From Schäfer et al. (1996)
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Comparisons:

Incrementally Slipping Friction

ψf

ψi

1. Tangential stiffness 

allows for direction 

reversal

2. Very similar to Cundall-

Strack model (with added 

complexity)
k0S/kn = 2/3

k0S/kN = 1/3

From Schäfer et al. (1996)
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Comparisons…

• Little difference between linear spring with sliding and 
incrementally slipping models for binary collisions – both 
model experimental data well
– pure sliding model also works well, but does not capture 

experimental observed velocity reversal

– no investigation of model differences for densely packed, highly
loaded systems

• The tangential force is typically a function of the normal 
force, so the choice of normal force model will influence 
the response of the tangential force model.
– There has been essentially no investigation as to how the 

tangential contact model is influenced by the normal contact 
model
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Comparisons…
• Sliding friction

– Schäfer and Wolf (1995)

• Viscous damping
– Gallas et al. (1992)

– Melin (1994)

– Luding et al. (1994)

– Zhang and Campbell (1992) (but the force is placed at the centroid)

• Viscous damping with sliding friction
– Kondic (1999)

– Pöschel and Buchholtz (1993)

– Pöschel and Herrmann (1995)

– Thompson and Grest (1991)

– Haff and Werner (1986)

• Linear damped spring with sliding friction
– Cundall and Strack (1979)

– Lee (1994)   (dashpot + min(spring force, sliding friction force))

– Lee and Herrmann (1993)  (dashpot + min(spring force, sliding friction force))

– Ristow and Herrmann (1994)

– Taguchi (1992) (damped linear spring – no friction)

– Tsuji et al. (1992)

• Variable spring stiffness with sliding friction
– Sadd et al. (1993) 

– Lan and Rosato (1997)

– Walton and Braun (1986)
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Rolling Friction

• Due to asymmetric traction distribution over contact area

( )rolling,
on 1

ˆmin ,R Nµ ′ ′=T F ω ω

Zhu and Yu (2003)

Figure from Zhu and Yu (2003)

rolling,
on 1

ˆ
R Nµ= −T F ω

Zhou et al. (2002)

ωωωω is the particle’s rotational velocity

0 ≤ µR ≤ 0.2 mm

ωωωω’ = ωωωω2 – ωωωω1 (rotational velocity of 2 relative to 1 –

note that both must be in the same FOR)

µR = 0.004d – 0.006d ≈ 0.01µsliding where d is the 

particle diameter

Kondic (1999)

rolling, 2 1
on 1

ˆ ˆ  where  R Nµ ′ ′= = −F F v v v v

v is the center of mass translational velocity

µR ~ 10-3

Note: µR should have different units 

depending on whether FN or ωωωω’ is used, but 
there is no mention of this by the authors.
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