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DEM Modeling:  Lecture 07

Normal Contact Force Models.  Part II
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Normal Contact Force Model 

Effects of Soft Springs
• Excluded volume error

– consider the solid fraction in a compressed system containing 
particles with stiff vs. soft springs

soft springs
⇒ solid fraction > 1!

(not realistic)

stiff springs
⇒ solid fraction < 1

(as expected)
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Normal Contact Force Model 

Effects of Soft Springs…
• Excluded volume error…

– Ketterhagen et al. (2005) found that sheared systems with soft 
springs produce stresses similar to those that would be generated 
if smaller particles were used  
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Normal Contact Force Model 

Effects of Soft Springs…

From Ketterhagen et al. (2005)

as spring stiffness ↓
− at large solid fraction, stresses ↓
− at small solid fraction, stresses ↑

2D shear simulations:
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Normal Contact Force Model 

Effects of Soft Springs…

• Detachment effect 
– (Luding et al.,1994)

– the effective coefficient of restitution 
of a system of particles depends upon 
the ratio of the time between 
collisions, t0 = s0/v0 to the duration of 
an impact, T, 

– spring stiffnesses that are too soft (i.e.
have too large of a T) may have a 
much smaller degree of energy 
dissipation than expected
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Normal Contact Force Model 

Effects of Soft Springs…

• Brake efficiency failure (Schäfer and Wolf, 1995)
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⇒ for contacts with v > vcrit, the “braking 
efficiency” decreases with increasing impact 
speed; particle rebound response is 
significantly altered
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Normal Contact Force Model 

Effects of Soft Springs…

From Campbell (2002)

Stress scaling varies 
depending on the 
dimensionless 
stiffness and solid 
fraction
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Normal Contact Force Model

Hysteretic Linear Spring

• First proposed by Walton and Braun (1986)

• Widely used
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kL ≡ loading spring stiffness
kU ≡ unloading spring stiffness (kU ≥ kL)
δres ≡ residual overlap
δmax ≡ maximum overlap during contact

• energy dissipation due to spring force hysteresis
• contact force is continuous
• energy dissipation is position dependent
• relatively simple model to implement, but need to 

retain history of δmax
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Normal Contact Force Model 

Hysteretic Linear Spring…

• The hysteretic linear spring model 

mimics elastic-perfectly plastic, 

quasi-static FEM model results.

From:  Walton, O.R. (1993)

• The hysteretic stiffnesses (kL, kU) model 

the strain hardening of the material due 

to plastic deformation.

• The residual overlap (δres) represents 
the permanent plastic deformation of 

the contact.
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Normal Contact Force Model 

Hysteretic Linear Spring…
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A simple example:

Note:  After full unloading 
(after reaching pt. D), the 
residual overlap is 
“forgotten” for the 
contact.  The “plastic 
deformation” for the 
contact only exists during 
the contact.
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δres,F

Normal Contact Force Model 

Hysteretic Linear Spring…

δ
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A more complex example:

A→B: initial loading
B→C: partial unloading
C→B→D: reloading beyond δmax,B

D→E: partial unloading beyond δres,D
E→D→F: reloading beyond δmax,D

F→G→H: full unloading 
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Normal Contact Force Model 

Hysteretic Linear Spring…

kL, kU
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≡ relative impact speed
m’ ≡ effective mass (= (mi

-1 + mj
-1)-1)

εN ≡ normal coefficient of restitution
Τ ≡ contact duration

For a two particle contact (derivation is left as an exercise):
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Normal Contact Force Model 

Hysteretic Linear Spring…
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Normal Contact Force Model 

Hysteretic Linear Spring…

0

0

*

*

*

m

k

k

m

k
t t

m

δ
δ

δ

δ
δ

δ

′
≡

≡
′

≡
′

ɺɺ
ɺɺ

ɺ

ɺ

m’
kL, kU



C. Wassgren, Purdue University 15

Normal Contact Force Model 

Hysteretic Linear Spring…

• Some observations
– the contact force is continuous at the start and end of 
the contact

– the contact force is always repulsive

– the loading portion of the contact is the same 
regardless of the coefficient of restitution

– energy dissipation is due to the hysteresis in the 
overlap
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Normal Contact Force Model 

Hysteretic Linear Spring…

• Some observations…
– coefficient of restitution is independent of impact 
speed (in real collisions εN ↓ as    ↑) 

– contact duration ↑ as kL ↓, m’ ↑, and εN ↑
• coefficient of restitution dependence is opposite that for the 
damped linear spring model

• contact duration is independent of impact speed (in real 
collisions, contact duration ↓ as impact speed ↑)

– maximum overlap ↑ as      ↑, m’ ↑, kL ↓
• larger overlaps make the geometrically rigid particle 
assumption less accurate and can cause modeling errors 
due to excluded volume effects

• unlike the damped linear spring model, coefficient of 
restitution does not play a role

0δɺ

0δɺ
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Normal Contact Force Model 

Hysteretic Linear Spring…

• The unloading spring stiffness (kU) may be found 
from the loading spring stiffness (kL) and the 
coefficient of restitution (εN):

• Method for determining the loading spring 
stiffness is not widely agreed upon
– consider three methods, all of which set particular 
contact parameters equal to those found using a 
Hertzian contact model
• maximum overlap

• contact duration

• maximum strain energy
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Normal Contact Force Model 

Hysteretic Linear Spring…

– equivalent maximum overlap, δmax
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Normal Contact Force Model 

Hysteretic Linear Spring…

– equivalent contact duration, T

HLS model:

Hertzian spring model:
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Normal Contact Force Model 

Hysteretic Linear Spring…

– maximum strain energy, SEmax

HLS model:

Hertzian spring model:
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Normal Contact Force Model 

Hysteretic Linear Spring…
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• For example:  two 3.18 mm diam. soda lime glass spheres (ρ = 2500 kg/m3, ν = 
0.22, E = 71 GPa) impacting at 1 m/s (εN = 0.97; Foerster et al., 1994):
• max overlap/eff. diameter = 0.2% ⇒ koverlap = 2.02 MN/m
• contact duration = 9.51 µs ⇒ kduration = 2.23 MN/m
• max strain energy = 10.5 µJ ⇒ kSE = 2.02 MN/m
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• With a constant kU, the coefficient of restitution remains constant 

regardless of impact speed

• A variable coefficient of restitution may be modeled using a 

variable unloading stiffness (Walton and Braun, 1986).

maxU Lk k SF= + where S is a constant and Fmax is the 

maximum force achieved before unloading.  

The constant S can be determined empirically 

from experimental data.  (S ~ 104 – 106 m-1).
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Normal Contact Force Model 

Hysteretic Linear Spring…

( )1
2

N
L

m
T

k

π
ε

′
= +

2
0

1 1
1L

N

k
S

mδ ε

 
∴ = −  ′  

ɺ



C. Wassgren, Purdue University 23

Normal Contact Force Model 

Hysteretic Linear Spring…

From Walton and Braun (1986)
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Normal Contact Force Model 

Hysteretic Linear Spring…

• Some observations…
– coefficient of restitution ↓ as impact speed ↑

• matches experimental values reasonably well
– contact duration ↓ as impact speed ↑

• very poor match to experimental data

• For example:  
− two 3.18 mm diam. spheres 
− soda lime glass:  ρ = 2500 kg/m3, ν
= 0.22, E = 71 GPa

− match kdur and S at 1 m/s (εN = 0.97)
− kduration = 2.23 MN/m
− S = 2.04*104 m-1
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Normal Contact Force Model 

Damped Hertzian Spring

• Taguchi (1992); Ristow (1992); Pöschel (1993); 
Lee and Hermann (1993); Zhou et al. (1999) 
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kHz ≡ Hertzian spring stiffness = 4/3R’1/2E’
ν ≡ damping coefficient

• spring force is consistent with Hertz model
• dashpot added (in an ad hoc fashion) to 

provide energy dissipation 
• contact force is discontinuous at start/end of 

contact due to damping force
• energy dissipation is velocity dependent
• simple model to implement
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Normal Contact Force Model 

Damped Hertzian Spring…

For a two particle contact (derivation is left as an exercise):

≡ relative impact speed
m’ ≡ effective mass (= (mi

-1 + mj
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ν ≡ damping coefficient
kHz ≡ Hertz spring stiffness = 4/3R’1/2E’
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Normal Contact Force Model 

Damped Hertzian Spring…
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Normal Contact Force Model 

Damped Hertzian Spring…
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Normal Contact Force Model 

Damped Hertzian Spring…
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Normal Contact Force Model 

Damped Hertzian Spring…

• Some observations
– the contact force is discontinuous at the start and end 
of the contact due to the viscous damping force (real 
contact forces are continuous)

– the contact force is cohesive toward the end of the 
impact (real contact forces are always repulsive for 
cohesionless systems)

– εN ↑ as impact speed ↑ (just the opposite in real 
collisions) 
• ν* ↓ as δdot ↑
• εN → 0 as δdot → 0 !

– contact duration ↓ as impact speed ↑ (consistent with 
real data)
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