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DEM Modeling: Lecture 06
Introduction to Soft-Particle DEM
Normal Contact Force Models. Part |
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Introduction to Soft-Particle DEM

* Most common type of DEM model

« Deterministic approach

« “Soft-particle” refers to the fact that particles can
“deform” during a contact

— particles remain geometrically rigid, “deformation” taken
iInto account in force models

— contact duration is finite
— multiple contacts may occur simultaneously
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Introduction to Soft-Particle DEM...

* More flexible approach than hard-particle
method

— variety of force models and particle shapes

— can model long lasting, multiple particle
collisions as well as dilute systems

* Typically a more time consuming
approach than hard-particle method
— due primarily to small integration time steps

— complex particle shapes can add to
computational load
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Introduction to Soft-Particle DEM...

)
Determine forces and torques acting on each particle in the system.

Fnet,i = Z Fbody,z' + Z Fsurface,i
Tnet,i = Z Tbody,i + Z Tsurface,i
!

Use Newton’s 2nd Law to determine each particle’s acceleration.
I o + (IZZ —[yy)a)ya)z =T

net,z

[, o, +(I,. -1 )oo =T,

net,y

Lo +(I,-1)oo =T

net,z

Integrate in time to find the new particle states.
X = |X.dt 1. =q,|0,1 o,
I I qz ql 22 77
X, :jxidt q, :Iqidt

No. é}d?\ Yes. @
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Soft-Particle Force Models

* Typical force models
— weight
— contact forces
— cohesion (e.g. liquid bridging)
— fluid forces
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Soft-Particle Force Models...

* Weight (gravitational body force)
— acts at particle center of mass
— does not cause a moment on the particle

(2™
lg = force acting on particle i

= mass of particle i
= gravitational acceleration

i
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Soft-Particle Force Models...

 Contact forces

— due to deformation of particle surfaces when
particles are in contact

— typically resolved into a normal force and a
tangential force, with the normal force being
independent of the tangential force
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Soft-Particle Force Models...

 In soft-particle DEM, particles are typically assumed to
remain geometrically rigid during contact (e.g. spheres
remain spheres) and “deformation” is accounted for in

force models

« DEM particles are allowed to overlap and the overlap
characteristics (e.g. overlap or overlap volume) are used in
determining the contact force

 soft-particle DEM limited to small deformations/overlaps!

...................... T /‘::/\ Overlap

undeformed sphere
surface contours
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Contact Kinematics

X = a particle’s COM position

\'; = translational velocity of a particle’'s COM

® = angular velocity of a particle about its COM

re = position vector from a particle’s COM to the
point of contact

Viec = Velocity of particle j relative to particle 7 at
the contact point

contact
plane

f = unit vector normal to the contact plane and
e X pointing from particle j toward particle j
Z global FOR S = unit vector tangential to the contact plane

and pointing in the direction of v, ¢

Note: Particle angular velocities are often given in a body-fixed frame of reference (FOR). All
of the vectors shown above are assumed to be in a global FOR (including the particle angular
velocities). A method for converting from a body-fixed to a global FOR will be presented in a
future lecture.
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Contact Kinematics...

n,S = speed of particle j relative to
particle i in the
normal/tangential direction

A Vrel,C o (Vrel,C ) n)n
: S = n n
‘Vrel,C _(Vrel,C n)n

n= Vrel C n

©
|
<
S
a
>

b
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Contact Kinematics...

sphere/sphere contact:

Xj_xi

n

‘Xj — X,

_ _18)\aA
XC—XZ.-I-(RZ. 25)n
_ _1.5\4
rC,i o (Rz 2 5)“
R = radius of a sphere r .=—(R.—l5)ﬁ
5 = normal contact overlap C,J j o2

Xc

location of the contact point
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Normal Force Models

* Some normal contact force models
— Hertzian spring
— damped linear spring
— hysteretic linear spring
— damped, Hertzian spring
— non-linear damped Hertzian spring
— hysteretic, non-linear spring
— continuous potential

12
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Hertzian Contact

« Elastic deformation of two concave, contacting objects

* First presented by Hertz (1882)

« Assumptions:

— contact can be modeled using the linear theory of elasticity (e.g.
continuous surfaces and no large strains)

— the dimensions of the contact area are much smaller than the
dimensions of the contacting bodies and the radii of curvature of
the contacting surfaces

— the contacting surfaces are frictionless

13
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Hertzian Contact...

« Hertzian contact between two spheres
— refer to Johnson (1985) for the derivation
— purely elastic contact, g = 1

_ 7!
F=k,.6
_ 4 112 '
b 1_1 1
5 _— =
" R. R.
F = force ! J
Ky, = Hertzian stiffness ) 2
S = overlap 1 B 1—v; I_Vj
R’ = effective radius E — E + E
R;, R; = radii of spheres iand i J
E’ = effective Young’s modulus
E, = Young’'s moduli for spheres i and j

Poisson’s ratios for spheres j and j

=]
= m
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Hertzian Contact...

« Consider two impacting particles
— full derivation left as an exercise

kHz

\/

/’E\

<4—

)

m;x; = F; = _kHz5%

. ¥
mx; =F, =ky0"

é':xl-—xj
5(t=0)=0
o(t=0)=09,

max

(15w /5
16R,12E, 0

maximum overlap

2 %
m
T ~2.870| —=
RE™S,

contact duration

15
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Normal Force Trajectories

sol < Hertz theory ;
F
o 7y (8)
10 995 0 1
]
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#
F
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E 20} i °
i
'*' i FIGURE 25-4 a) Representative zoning used in finite element calculations
El of a hemisphere impinging on a rigid wall (Walton and Brandeis, 1984), and
’ : b) Calculated equal pressure contours using elastic-perfectly-plastic
10 : i constitutive model.
i
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FIGURE 25-5. Loading and unloading force-displacement behavior for
elastic-plastic spheres during quasi static normal displacement as calculated
using NIKE2D finite element model (Walton and Brandeis, 1984)

From: Walton (1993)
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Norm

al Force Trajectories...
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From Goldsmith (1960)
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Normal Force Trajectories...

ol Material: cellulose 5 90 -
spheres ' -
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Fig. 11. Applied normal load versus normal displacement
curve for cellulose acetate spheres.

Two 6 mm diameter cellulose acetate spheres

From Mullier et al. (1991)
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Elastic Wave Speed

e
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pressure /pai

Figure 2. Elastic wave velocity in an vco packing of § inch diameter steel balls with “low’ (~) and
*high® (o) dimensional tolerances, +50x 107% inches and +10x 107 inches. respectively ; after
Dty & Mindlin (1957), fig. 6 (first mode). Broken lines of slope } have been added here, The solid
lines with slope § represent the Hertz-Mindlin contact, (a) with, and (b} without tangential stiffness.
(1 psi &= 700 kg m#.)

Hertzian theory = elastic wave speed « p1/6
asperity (conical tip) contact = elastic wave speed « p'/4

From Goddard (1990)
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Normal Coefficient of Restitution...

1 1+4—o
T & S T —
A--—__ AT
L
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B 6.35 mm (dafa)
@ 0.81 A 727 mm {data)
& 254 mm (dafa)
- - - 8.35 mm (VM)
- === 42,7 mim (VM)
il 0 25.4 mim (VM)
' —{PM)
'l | I | a1l
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Hertzian contact

plastic yield speed (Johnson,
1985):
R’3Y5
Ve~ 107 ——

yield 14
mE

VM: 1—e o V5 (e > 1)
PM: e oc V14

(Kuwabara and Kono, 1987;
Johnson, 1985)

FIG. 7. Coefficient of restitution vs normal impact velocity for
nylon spheres for different diameters on a log-log scale. The diam-
eter of the spheres is shown in the figure. VM denotes the viscoelas-
tic model. PM denotes plastic model.

From Labous et al. (1997)
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Contact Duration

1000 [T
. A Steel, Expt. (Sears, 19082 .
m v=0.3, DYNA2D (Haggen, 1984).
® v=0.4, DYNA2D, (Hagen, 1984)
q Hertz Theary ]
" | Hertz theory is in good
E u agreement with
- 1 measured contact
2 durations
o
o
A
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FIGURE 25-2 Calclulated contact time for impacts of elastic spheres,
(Walton and Hagen, -1984), and measured contact times, for impacts of rods
with spherical ends (Sears, 1908), compared with Hertz theory predicted
inverse 1/5 power dependence on incident velocity, solid lines.

From Walton (1993)
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Contact Duration

 Difficult quantity to measure, usually use metallic
particles

120 110
- 105 | Hertz LSD
o Hertz LSD e KK ———-1H
e KK —-—--LH 100 ¥ —e—WBCE == = WBVE
A — e WBCE ===WBVE 95 ———-T(fitted) © experiment

100 -
=== T (fitted) O experiment

LsD. WBCE. and WBVE

a0

collision duration (ps)
collision duration (Ls)
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LSD and WBCE 63 T
60 L 1 L ! ! 1 60 1 I 1 I 1 I 1
0.20 0.40 0.60 0.80 1.00 1.20 1.40 025 0.50 0.75 1.00 1.25 1.50 1.75 2.00
impact velocity (m/s) impact velocity (m/s)
Fig. 4. Stainless steel system—comparison of experimental data and model Fig. 9. Chrome steel system—comparison of experimental data and model
predictions for collision duration. Simulation parameters are given in Table 2. predictions for collision duration. Simulation parameters are given in
Table 2.

(stainless steel grade 316) (chrome steel AISI 52100)

Hertz theory is in good agreement

From Stevens and Hrenya (2005) with measured contact durations
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Contact Duration...
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Fig. 4. Duration of contact as a function of the initial normal velocity w [23,28].

From Kruggel-Emden et al. (2007)

23
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Hertzian Contact...

« Comments

— full Hertzian force-displacement curve is considerably
different than what is observed for real particles

— Hertzian contact is elastic = ¢, = 1; real particles
have gy < 1

— contact duration is close to what is observed
experimentally

24
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Normal Contact Force Model
Damped Linear Spring

* First proposed by Cundall and Strack (1979)

* Widely used
o .
F, =(—ko+vo )i
k = spring stiffness
1% = damping coefficient

)\ « damped linear spring aka Kelvin-Voigt element

 spring provides elastic rebound, dashpot
dissipates energy

 contact force is discontinuous at start/end of
contact due to damping force

» energy dissipation is velocity dependent

» simple model to implement
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Normal Contact Force Model
Damped Linear Spring...

For a two particle contact (derivation is left as an exercise):

)

Am'k
V —
\/ 1+ B
)

p
k T=r |2 1+L2
AN k S

=
‘ Y Note: f >0.5
5, = relative impact speed ote. 1or gy > U.0o =
m = effective mass (= (m;' + m")") N . (m' o
gy = normal coefficient of restitution Omax ~ 3(‘9N +1)50 T (< ~1% error)
T = contact duration '
B = n/In(&y) I'~rm n (< 3% error)

26
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Normal Contact Force Model
Damped Linear Spring...

dimensionless overlap or velocity , §* or §dot*
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Normal Contact Force Model
Damped Linear Spring...
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Normal Contact Force Model
Damped Linear Spring...

e Some observations

— the contact force is discontinuous at the start and end
of the contact due to the viscous damping force (real
contact forces are continuous)

— the contact force is cohesive toward the end of the
impact (real contact forces are always repulsive for
cohesionless systems)

— energy dissipation is due to the damping force = a
function of the relative velocity between particles =
little energy loss for quasi-static systems

« some researchers (e.g. Cundall and Strack, 1979) used
global damping (a dashpot between a particle and the
ground) to more quickly dissipate the energy — not very
realistic
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Normal Contact Force Model
Damped Linear Spring...

e Some observations...

— coefficient of restitution is independent of impact
speed (in real collisions ¢, { as ;)

— contact duration T as k4, m’ T, and g {

« larger contact durations are desirable since larger simulation
integration time steps may be used (to be discussed in a
future lecture)

« contact duration is independent of impact speed (in real
collisions, contact duration | as impact speed 1)
— maximum overlap Tas 6, T, m’ T, k4, and gy T

* larger overlaps make the geometrically rigid particle
assumption less accurate and can cause modeling errors
due to excluded volume effects

30
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Normal Contact Force Model
Damped Linear Spring...

« The dashpot coefficient (v) may be found from
the spring stiffness (k) and the coefficient of

restitution (&y): '
( N) V= 4m kz where [ = i
1+ Ingy

* Method for determining the spring stiffness is not
widely agreed upon

— consider three methods, all of which set particular

contact parameters equal to those found using a
Hertzian contact model

* maximum overlap
« contact duration
* maximum strain energy
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Normal Contact Force Model
Damped Linear Spring...

— equivalent maximum overlap, o

max
. ! t -1 T
DLS model: 8y = Jp,| o exp[ an (/ )] where S =
k yij Ingy
: %
. . . _ 15 m )
Hertzian spring model: O = (16 P 9% j

* + Moverlap
P

2
) -1
"k = 1.053(5.0171’%R’E’2 )A {exp{— tan ('B)}}

32
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Normal Contact Force Model
Damped Linear Spring...

— equivalent contact duration, T

m' 1 T

DLS model: T = ﬂ\/k£1+182j where ,8 =

Ingy

12 )5
Hertzian spring model: 7 =2.870 7 o
R'E"6,

. 1 25
O TR 1.198[1 +%}(50m'4R’E’2 )/
p
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Normal Contact Force Model
Damped Linear Spring...

— equivalent maximum strain energy, SE, .,

DLS model: SEpax =+ k05,  Where

max

5 'Y
Hertzian spring model:  SE, ., :%k 52 where &y, = %R PE

Hz“max 5
15 m )
5max — 1 50
16 R’AE’

)%

kg 1.053(50m’12R’E’2
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Normal Contact Force Model
Damped Linear Spring...

1.0
e koverlap/kduration
0.9 —— kSE/kduration
—— kSE/kowverlap { 2
0.8 —
koverlap kSE tan (IB)
0.7 1 ~ SXp | —
2 e kduration kduration IB
s
2 os | ksr _ 0.8788
: ~y
£ 04 | k .
= duration 1 1
+ -
03 182
0.2
0.1
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

normal coefficient of restitution, en

« For example: two 3.18 mm diam. soda lime glass spheres (p = 2500 kg/m3, v =
0.22, E = 71 GPa) impacting at 1 m/s (g, = 0.97; Foerster et al., 1994):

 max overlap/eff. diameter = 0.2% = k4, = 1.96 MN/m
* contact duration = 9.51 us = Kyyration = 2-29 MN/m

* max strain energy = 10.5 xJ = Kge =2.02 MN/m
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Normal Contact Force Model
Stiffness Evaluation

 Which stiffness should be used?

— limited overlap
* Lan and Rosato (1997)
e Corkum and Ting (1986)
* Dury and Ristow (1997)

— equivalent contact duration
« Stevens and Hrenya (2005)

— equivalent strain energy
« Lan and Rosato (1995)

— other methods
* k= k,,: Buchholtz and Pdschel (1994)
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