
C. Wassgren, Purdue University 1

DEM Modeling:  Lecture 06

Introduction to Soft-Particle DEM
Normal Contact Force Models.  Part I
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Introduction to Soft-Particle DEM

• Most common type of DEM model

• Deterministic approach

• “Soft-particle” refers to the fact that particles can 
“deform” during a contact
– particles remain geometrically rigid, “deformation” taken 
into account in force models

– contact duration is finite 

– multiple contacts may occur simultaneously
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Introduction to Soft-Particle DEM…

• More flexible approach than hard-particle 
method
– variety of force models and particle shapes

– can model long lasting, multiple particle 
collisions as well as dilute systems

• Typically a more time consuming 
approach than hard-particle method
– due primarily to small integration time steps

– complex particle shapes can add to 
computational load 
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Introduction to Soft-Particle DEM…

Yes.No.
Stop.

Use Newton’s 2nd Law to determine each particle’s acceleration.

( )
( )
( )

net ,

net, net,

net,

          

xx x zz yy y z z

i i i yy y xx zz x z y

zz z yy xx x y z

I I I T

m I I I T

I I I T

ω ω ω

ω ω ω

ω ω ω

+ − =

= + − =

+ − =

x F

ɺ

ɺɺɺ

ɺ

Start

Determine forces and torques acting on each particle in the system.

net, body, surface,

net, body, surface,

i i i

i i i

= +

= +

∑ ∑
∑ ∑

F F F

T T T

Integrate in time to find the new particle states.

[ ]1
2

         0,   

           

i i i i i

i i i i

dt

dt dt

= =

= =

∫
∫ ∫

x x q q ω

x x q q

ɺɺ ɺɺ

ɺɺ

End?



C. Wassgren, Purdue University 5

Soft-Particle Force Models

• Typical force models
– weight 

– contact forces

– cohesion (e.g. liquid bridging)

– fluid forces
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Soft-Particle Force Models…

• Weight (gravitational body force)
– acts at particle center of mass

– does not cause a moment on the particle

i im=F g

Fi ≡ force acting on particle i
mi ≡ mass of particle i
g ≡ gravitational acceleration

g
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Soft-Particle Force Models…

• Contact forces
– due to deformation of particle surfaces when 
particles are in contact

– typically resolved into a normal force and a 
tangential force, with the normal force being 
independent of the tangential force
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Soft-Particle Force Models…
• In soft-particle DEM, particles are typically assumed to 
remain geometrically rigid during contact (e.g. spheres 
remain spheres) and “deformation” is accounted for in 
force models

• DEM particles are allowed to overlap and the overlap 
characteristics (e.g. overlap or overlap volume) are used in 
determining the contact force

• soft-particle DEM limited to small deformations/overlaps!

overlap

undeformed sphere

surface contours
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Contact Kinematics
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x ≡ a particle’s COM position
v ≡ translational velocity of a particle’s COM 
ωωωω ≡ angular velocity of a particle about its COM
rC ≡ position vector from a particle’s COM to the 

point of contact
vrel,C ≡ velocity of particle j relative to particle i at 

the contact point
≡ unit vector normal to the contact plane and 
pointing from particle i toward particle j

≡ unit vector tangential to the contact plane 
and pointing in the direction of vrel,C

contact 
plane
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Note:  Particle angular velocities are often given in a body-fixed frame of reference (FOR).  All 
of the vectors shown above are assumed to be in a global FOR (including the particle angular 
velocities).  A method for converting from a body-fixed to a global FOR will be presented in a 
future lecture.



C. Wassgren, Purdue University 10

Contact Kinematics…
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Contact Kinematics…
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δ ≡ normal contact overlap
xC ≡ location of the contact point
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Normal Force Models

• Some normal contact force models
– Hertzian spring

– damped linear spring

– hysteretic linear spring

– damped, Hertzian spring 

– non-linear damped Hertzian spring

– hysteretic, non-linear spring

– continuous potential
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• Elastic deformation of two concave, contacting objects

• First presented by Hertz (1882)

• Assumptions:
– contact can be modeled using the linear theory of elasticity (e.g.
continuous surfaces and no large strains)

– the dimensions of the contact area are much smaller than the 
dimensions of the contacting bodies and the radii of curvature of 
the contacting surfaces

– the contacting surfaces are frictionless

Hertzian Contact
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Hertzian Contact…

• Hertzian contact between two spheres
– refer to Johnson (1985) for the derivation

– purely elastic contact, εN = 1
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F ≡ force
kHz ≡ Hertzian stiffness
δ ≡ overlap
R’ ≡ effective radius
Ri, Rj ≡ radii of spheres i and j
E’ ≡ effective Young’s modulus
Ei, Ej ≡ Young’s moduli for spheres i and j
νi, νj ≡ Poisson’s ratios for spheres i and j



C. Wassgren, Purdue University 15

Hertzian Contact…
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• Consider two impacting particles

– full derivation left as an exercise
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Normal Force Trajectories

From:  Walton (1993)
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Normal Force Trajectories…

From Goldsmith (1960)
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Normal Force Trajectories…

From Mullier et al. (1991)

Two 6 mm diameter cellulose acetate spheres
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Elastic Wave Speed

From Goddard (1990)

Hertzian theory ⇒ elastic wave speed ∝ p1/6

asperity (conical tip) contact ⇒ elastic wave speed ∝ p1/4
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Normal Coefficient of Restitution…

From Labous et al. (1997)

plastic yield speed (Johnson, 
1985):

VM:  1 – e ∝ V1/5 (e → 1) 
PM:  e ∝ V-1/4

(Kuwabara and Kono, 1987; 
Johnson, 1985)

3 5
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Hertzian contact
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Contact Duration

From Walton (1993)

Hertz theory is in good 

agreement with 

measured  contact 

durations
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Contact Duration

From Stevens and Hrenya (2005)

(stainless steel grade 316) (chrome steel AISI 52100)

• Difficult quantity to measure, usually use metallic 
particles

Hertz theory is in good agreement 

with measured contact durations
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Contact Duration…

From Kruggel-Emden et al. (2007)
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Hertzian Contact…

• Comments
– full Hertzian force-displacement curve is considerably 
different than what is observed for real particles

– Hertzian contact is elastic ⇒ εN = 1; real particles 
have εN < 1

– contact duration is close to what is observed 
experimentally
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Normal Contact Force Model 

Damped Linear Spring

• First proposed by Cundall and Strack (1979)

• Widely used

ν

k

Rj
Ri

δ

n̂

( ) ˆi kδ νδ= − +F nɺ

k ≡ spring stiffness
ν ≡ damping coefficient

• damped linear spring aka Kelvin-Voigt element
• spring provides elastic rebound, dashpot 
dissipates energy

• contact force is discontinuous at start/end of 
contact due to damping force

• energy dissipation is velocity dependent
• simple model to implement
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Normal Contact Force Model 

Damped Linear Spring…

For a two particle contact (derivation is left as an exercise):

≡ relative impact speed
m’ ≡ effective mass (= (mi

-1 + mj
-1)-1)

εN ≡ normal coefficient of restitution
T ≡ contact duration
β ≡ π/ln(εN)
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Normal Contact Force Model 

Damped Linear Spring…

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

dimensionless time, t*

d
im

e
n
s
io
n
le
s
s
 o
v
e
rl
a
p
 o
r 
v
e
lo
c
it
y
 ,
 δδ δδ
* 
 o
r 
δδ δδ
d
o
t*

εN = 0.9

εN = 0.5

εN = 0.1

εN = 0.1

εN = 0.5 εN = 0.9 thick lines:  δ *

thin lines:  δ dot*

0

0

*

*

*

k

m

k
t t

m

δ
δ

δ

δ
δ

δ

≡
′

≡

≡
′

ɺ

ɺ
ɺ

ɺ

ν

km’



C. Wassgren, Purdue University 28

Normal Contact Force Model 

Damped Linear Spring…
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Normal Contact Force Model 

Damped Linear Spring…

• Some observations
– the contact force is discontinuous at the start and end 
of the contact due to the viscous damping force (real 
contact forces are continuous)

– the contact force is cohesive toward the end of the 
impact (real contact forces are always repulsive for 
cohesionless systems)

– energy dissipation is due to the damping force ⇒ a 
function of the relative velocity between particles ⇒
little energy loss for quasi-static systems
• some researchers (e.g. Cundall and Strack, 1979) used 
global damping (a dashpot between a particle and the 
ground) to more quickly dissipate the energy – not very 
realistic
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Normal Contact Force Model 

Damped Linear Spring…

• Some observations…
– coefficient of restitution is independent of impact 
speed (in real collisions εN ↓ as    ↑) 

– contact duration ↑ as k ↓, m’ ↑, and εN ↓
• larger contact durations are desirable since larger simulation 
integration time steps may be used (to be discussed in a 
future lecture)

• contact duration is independent of impact speed (in real 
collisions, contact duration ↓ as impact speed ↑)

– maximum overlap ↑ as      ↑, m’ ↑, k ↓, and εN ↑
• larger overlaps make the geometrically rigid particle 
assumption less accurate and can cause modeling errors 
due to excluded volume effects

0δɺ

0δɺ
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Normal Contact Force Model 

Damped Linear Spring…

• The dashpot coefficient (ν) may be found from 
the spring stiffness (k) and the coefficient of 
restitution (εN):

• Method for determining the spring stiffness is not 
widely agreed upon
– consider three methods, all of which set particular 
contact parameters equal to those found using a 
Hertzian contact model
• maximum overlap

• contact duration

• maximum strain energy
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Normal Contact Force Model 

Damped Linear Spring…

– equivalent maximum overlap, δmax

Hertzian spring model:
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Normal Contact Force Model 

Damped Linear Spring…

– equivalent contact duration, T

DLS model:

Hertzian spring model:
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Normal Contact Force Model 

Damped Linear Spring…

– equivalent maximum strain energy, SEmax

DLS model:

Hertzian spring model:
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Normal Contact Force Model 

Damped Linear Spring…
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• For example:  two 3.18 mm diam. soda lime glass spheres (ρ = 2500 kg/m3, ν = 
0.22, E = 71 GPa) impacting at 1 m/s (εN = 0.97; Foerster et al., 1994):
• max overlap/eff. diameter = 0.2% ⇒ koverlap = 1.96 MN/m
• contact duration = 9.51 µs ⇒ kduration = 2.29 MN/m
• max strain energy = 10.5 µJ ⇒ kSE = 2.02 MN/m
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Normal Contact Force Model

Stiffness Evaluation 

• Which stiffness should be used?
– limited overlap

• Lan and Rosato (1997)

• Corkum and Ting (1986)

• Dury and Ristow (1997)

– equivalent contact duration
• Stevens and Hrenya (2005)

– equivalent strain energy
• Lan and Rosato (1995)

– other methods
• k = kHz:  Buchholtz and Pöschel (1994)
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