
C. Wassgren, Purdue University 1

DEM Modeling: Lecture 03
The Hard-Particle Algorithm

Collision Detection

C. Wassgren, Purdue University 2

• A collision will occur between two spheres when the

magnitude of the position of one sphere relative to the

other is equal to the sum of sphere radii.

• Two approaches for marching forward in time

– Time-Step Driven: time proceeds in small increments

– Event Driven: time proceeds from collision to collision

)(2121 rr +=− xx

|x1-x2|

r2r1

x2

x1

When Two Spheres Collide…

C. Wassgren, Purdue University 3

• Increment the particle velocities and positions in small

time steps (Hopkins and Louge, 1991)

• Collisions occur when:

1 2 1 2()r r− ≤ +x x

1 1
2 2

1
2

1

1

nn n

n n n

t

t

−+ −

− +

= + ∆

= + ∆

x x x

x x x

ɺ ɺ ɺɺ

ɺ

Time Step Driven Algorithm

1 2

1 2

(Verlet/leapfrog algorithm –

other time integration

schemes to be discussed

in a different lecture)

C. Wassgren, Purdue University 4

• Choose time step so that a particle moves a fraction of

its diameter during each time step.

– a function of particle size and speed, not a function of particle

material properties (as is the case with the soft-particle method)

– larger time steps ⇒ faster sims, but larger overlaps and more

error (more on this topic later in this lecture)

– can include non-collision forces (e.g. aerodynamic, electrostatic,

gravitational) acting on particles between collisions by

determining a particle’s acceleration using Newton’s Laws

• Still need to check for collisions between particles

Time Step Driven Algorithm…

C. Wassgren, Purdue University 5

Brute Force

Coarse Contact Detection
• Assume a system contains N particles

• To determine if contact occurs between any two particles

– could check for contacts between all possible particle pairs:

• particle 1: N-1 contact checks

• particle 2: N-2 contact checks

• particle N-1: 1 contact check

• particle N: 0 contact checks

• total # of contact checks:

(N-1)+(N-2) +…+ 1 = N(N-1)/2 ~ O(N2)

– aka “naïve” contact detection

• There are more efficient ways of checking for contacts!

– neighboring-cell contact detection scheme

– nearest-neighbor contact detection scheme

– sweep and prune

C. Wassgren, Purdue University 6

• divide the workspace into a grid of cells

• for each cell, maintain a list of the particles

contained within that cell

• for a given particle, only check for contact

between other particles in its own cell and

neighboring cells

• cell size may be smaller than particle size, a

single particle may occupy multiple cells

cell (i, j)

particle 1

particle 3

Neighboring Cell

Coarse Contact Detection

7

8

3
i

j

1

5

4

9

2

j+1j-1

i+1

i-1

For particle 1, in cell (i, j), check

for contact against:
cell (i-1, j-1): particle 7

cell (i-1, j): particles 2 and 9

cell (i-1, j+1): -

cell (i, j-1): -

cell (i, j): particle 3

cell (i, j+1): particle 4

cell (i+1, j-1): particle 8

cell (i+1, j): particle 5

cell (i+1, j+1): -

double linked lists

are often used to

maintain the cell lists

(More on coarse contact

detection in a different lecture.)

C. Wassgren, Purdue University 7

• It is possible to have more than two particles colliding

simultaneously using a time step algorithm.

– likelihood decreases as time step decreases

– could use a multi-time step approach – move backwards in time

if multiple overlaps occur and then move forward again with a

smaller time step

– could perform two hard particle collisions, one after the other

(collisions in rapid succession), and accept the error associated

with the calculation

A Time Step Algorithm Issue

i j

k

C. Wassgren, Purdue University 8

yesno
Stop

Start

End?

Time Step Driven Flowchart

Check for particle collisions

Determine post-collision states for colliding particles

Integrate particle states

Make measurements

C. Wassgren, Purdue University 9

• Assume particles move in ballistic trajectories between

impacts

where the subscript “0” represents the conditions

immediately after the previous collision

()

()

2

1 01 01 01 01 01

2

2 02 02 02 02 02

1
() ()

2

1
() ()

2

t t t t t

t t t t t

= − + − +

= − + − +

x x x x

x x x x

ɺɺ ɺ

ɺɺ ɺ

Event Driven Algorithm

1 2

t01

t

t02

C. Wassgren, Purdue University 10

• A collision occurs when

where T is the time when the collision occurs.

• Substituting and simplifying gives:

Event Driven Algorithm…

() () ()2 1 2 1T T r r− = +x x

4 3 2

4 3 2 1 0 0a T a T a T a T a+ + + + =

()

()
()

()

2

4

3

2

2

1

2 2

0 1 2

2

2

2

a

a

a

a

a r r

=

= ⋅

= ⋅ +

= ⋅

= − +

A

A B

A C B

B C

C

and ()1
01 022

01 01 01 02 02 02

2 21 1
01 01 01 01 02 02 02 022 2

t t

t t

= −

= − + + −

= − + − + −

A x x

B x x x x

C x x x x x x

ɺɺ ɺɺ

ɺɺ ɺ ɺɺ ɺ

ɺɺ ɺ ɺɺ ɺ

where

C. Wassgren, Purdue University 11

• Use Bairstow’s Method to solve the quartic equation (see, for

example, Hoffman, 2001).

– factors out quadratic equations

– uses an iterative Newton’s approach to determining the coefficients for

the quadratic equations

• Note that when the accelerations are identical, then:

Event Driven Algorithm…

()
()

4

3

2

201 02 01 02

2 21 1
101 01 01 01 02 02 02 022 2

2 2

0 1 2

0

0

2

a

a

a

at t

a r r

=

==

== ⇒ = − ⇒

= ⋅= − + − + −

= − +

A 0

Bx x B x x

B CC x x x x x x

C

ɺɺ ɺɺ ɺ ɺ

ɺɺ ɺ ɺɺ ɺ

2

2 1 0 0a T a T a+ + =

()()4 3 2 2 2

4 3 2 1 0 2 1 0 2 1 00 0a T a T a T a T a m T mT m n T n T n+ + + + = ⇒ + + + + =

C. Wassgren, Purdue University 12

• A collision will occur when:

– complex values for T ⇒ particles never collide with each other

– T < max(t01, t02) ⇒ particles collide in the past

– The larger positive root to the equation

is not considered since it corresponds to the time when |x2-x1|

=(r2+r1) when particles are allowed to pass through each other

2

1 1 2 0

2

4

2

a a a a
T

a

− − −
=

Event Driven Algorithm…

2

1 1 2 0

2

4

2

a a a a
T

a

− + −
=

at time Tsmall

at time Tlarge

(particles have passed through each other)

C. Wassgren, Purdue University 13

• The list of collision times

and participants is referred

to as the “collision list.”

yesno
Stop

Determine time of all possible collisions

Form a double-linked list of collision times (and

participants) in order of increasing collision time

Increase time to the next collision time

Perform collision - Determine new states for the two

particles involved in the collision

Determine all the new possible collision times for the two

particles involved in the collision

Insert new collision times, sorted appropriately, into the collision list

Start

Make measurements

End?

Event Driven Algorithm…

C. Wassgren, Purdue University 14

Start

element

element

element

End

Start

element

element

element

End

Original List

with Links

Removing an

Element

Start

element

element

element

End

element

Adding an

Element

Double Linked Lists

C. Wassgren, Purdue University 15

Double Linked Lists…

• C++ Standard Template Library (STL) has a double-linked list class

– highly recommend for use – minimize chance of memory allocation/leak

errors when programming

• Examples of miscellaneous commands:

#include <list.h>

list<double> L;

double value1 = 1.0, value2 = 2.0, value 3 = 3.0;

L.clear();

L.push_front(value1);

L.push_front(value3);

L.push_back(value2);

L.sort();

• To learn more:

– Google “C++ STL list”

C. Wassgren, Purdue University 16

An Example Collision List Scenario

1. Example collision list prior to collision resolution

2. Perform collision resolution for particles in the first element in list.

3. Remove references to particles involved in the collision.

(6,8): T = 3.2

(2,5): T = 3.4

(4,6): T = 4.0

(1,9): T = 4.1

(8,9): T = 4.3

(5,6): T = 4.4

(2,5): T = 3.4

(1,9): T = 4.1

() ()6 6 8 8 6 6 8 8, , , , , ,
− +
⇒x x x x x x x xɺ ɺ ɺ ɺ

C. Wassgren, Purdue University 17

An Example Collision List Scenario…

4. Calculate new collision times for the particles involved in the

collision using the post-collision states. Is potentially a 2N

calculation, e.g. check 6 against 1, 2, 3,… and 8 against 1, 2, 3,

…

5. Add new collisions to collision list (only those with collision times

greater than the current time) and sort in ascending order based

on collision time.

(4,6): T = 3.3

(2,5): T = 3.4

(8,9): T = 3.9

(1,9): T = 4.1

C. Wassgren, Purdue University 18

Another Collision Detection

Approach

• Rather than perform a 2N collision detection step

after each collision, use a neighboring cell approach.

• The collision list should only include particle

collisions with particles in the current cell and

neighboring cells (e.g. red checked with blue).

• The collision list will include “collisions” between a

particle’s center and the grid walls (red cell). For

non-accelerating particles, this is a simple linear

calculation for collision time.

• When a particle/grid wall “collision” occurs, do not

change the particle state, but instead move the

particle to a new cell and re-calculate collision times

with the new walls and particles within the

neighboring cells.

• Use a cell size equal to the particle diameter to

minimize the number of collision detection

calculations.
See, for example, Lasinski et al. (2004)

C. Wassgren, Purdue University 19

Solving for Quartic Roots
// Initial guesses for roots.

if (t > 0.0) {

r = 2.0*t;

s = -t*t;

} else {

r = s = 1.0;

}

// Solve by applying Bairstow's method.

count = 0;

do {

flag = 0;

b4 = a4;

b3 = a3 + r*b4;

b2 = a2 + r*b3 + s*b4;

b1 = a1 + r*b2 + s*b3;

b0 = a0 + r*b1 + s*b2;

c4 = b4;

c3 = b3 + r*c4;

c2 = b2 + r*c3 + s*c4;

c1 = b1 + r*c2 + s*c3;

denom = c2*c2 – c1*c3;

if ((denom != 0.0) && (count < 1000)) {

delta_r = (-b1*c2 + b0*c3)/denom;

delta_s = (-b0*c2 + b1*c1)/denom;

r += delta_r;

s += delta_s;

count++;

if ((fabs(delta_r) > tol) || (fabs(delta_s) > tol)) {

flag = 1;

}

} else {

// perturb the r and s values and start again

r = 500.0*(0.5-(double) rand()/(double) RAND_MAX);

s = 500.0*(0.5-(double) rand()/(double) RAND_MAX);

count = 0;

flag = 1;

}

} while (flag != 0);

m2 = 1.0;

m1 = -r;

m0 = -s;

n2 = a4;

n1 = a3+a4*r;

n0 = -a0/s;

C. Wassgren, Purdue University 20

Solving a Quadratic Equation

if (a2 != 0.0) { // check to see if a linear equation

if ((temp = a1*a1 – 4.0*a2*a0) < 0.0)

root1 = root2 = NaN; // imaginary roots

else {

if (a1 == 0.0) {

root1 = sqrt(-a0/a2);

root2 = -root1;

} else {

if (a1 < 0.0)

q = -0.5*(a1 - sqrt(temp));

else

q = -0.5*(a1+sqrt(temp));

root1 = q/a2;

root2 = a0/q;

}

}

} else { // a linear eqn, not a quadratic

if (a1 != 0.0)

root1 = root2 = -a0/a1;

else // a0 = 0

root1 = root2 = NaN; // no roots to solve for

}

The normal approach:

2

1 1 2 0

2

4

2

a a a a
T

a

− ± −
=

but if a1
2 >> 4a2a0, then

1 1

22

a a
T

a

′− ±
= where 2

1 1 2 0 14a a a a a′ = − ≈

A better approach to avoid cancellation error:

() 21
1 1 1 2 02

sgn 4q a a a a a = − + −

0

2

,
aq

T
a q

=

and cancellation will occur for the “-” root.

C. Wassgren, Purdue University 21

Inelastic Collapse

• e.g., McNamara and Young (1992)

• Occurs when collisions occur in rapid succession

– e.g., a particle coming to rest on a surface

– ⇒ an infinite number of collisions occurs in finite time

• Problematic for an event driven approach

– inefficient when many collisions occur in a short amount of time

– ⇒ can’t be used to simulate granular materials with long lasting

contacts without computational algorithm “fixes” or using a time-step

approach

• Inelastic collapse is more likely to occur when

– normal coeff. of rest. is small (e.g. εN <≈ 0.6)

– the solids fraction is large (less significant than εN)

C. Wassgren, Purdue University 22

Time Step vs. Event Driven

U

U

L

• Consider the pure shear, 2D

simulations by Ketterhagen et

al. (2005)

• Lees-Edwards (1972)

boundary conditions

with shear rate γ = U/L

• calculate stresses in the

domain

• use time step and event

driven approaches

• compare results to

kinetic theory

predictions

• relative overlap, δ/d,
proportional to time

step, ∆t

 and ~ ~C Cd t t
d

δ
γ δ γ∆ ∆ ∆ ⇒ ∆x xɺ ɺ∼

C. Wassgren, Purdue University 23

Stress results from the time step driven algorithm for ε = 0.9 (a) ν = 0.1, and (b) ν = 0.5.

For sufficiently small time steps (relative overlap is proportional to ∆t), the stresses

approach an asymptotic value. As the time step increases (i.e. overlap increases), the

error increases. The horizontal lines show relative error thresholds of ± 2.5%. Open

symbols: kinetic contribution, closed symbols: collisional contribution. Squares: xx

component, triangles: -xy component, and diamonds: yy component.

Time Step vs. Event Driven…

C. Wassgren, Purdue University 24

Percent error in stress results as compared to the asymptotic values (equivalent to the event

driven results) for the time step driven model at (a) ε = 0.9 and (b) ε = 0.5 and a range of

solid fractions.

Time Step vs. Event Driven…

C. Wassgren, Purdue University 25

Time Step vs. Event Driven…

• The time step driven approach can be more

computationally efficient than the event-driven approach

at large solid fractions where frequent collisions occur.

– larger errors, however, as solid fraction, relative impact speed,

and time step increase

• As the time step decreases, results from the time step

driven algorithm approach those from event driven

algorithm

• One cannot easily model the effects of other forces such

as electrostatic or aerodynamic forces if an event driven

approach is used. These effects can be modeled using

a time step driven approach.

C. Wassgren, Purdue University 26

Summary

• Hard-particle simulations are either:

– time step driven

• time proceeds in sufficiently small increments

• can incorporate forces on particles between collisions

• is not subject to inelastic collapse

• slower for dilute systems, faster for dense systems

• may have multi-particle collisions

• errors due to overlaps increase as solid fraction, time step,

and relative impact speed increase

– event driven

• time proceeds from collision to collision

• computational algorithm utilizes a “collision list”

• simulation can suffer from inelastic collapse

• slower for dense systems, faster for dilute systems

C. Wassgren, Purdue University 27

References
Hoffman, J.D., 2001, Numerical Methods for Engineers and Scientists, Marcel-Dekker,

New York.

Hopkins, M.A. and Louge, M.Y., 1991, “Inelastic microstructure in rapid granular flows of

smooth disks,” Physics of Fluids A, Vol. 3, No. 1, pp. 47 – 57.

Ketterhagen, W.R., Curtis, J.S., and Wassgren, C.R., 2005, “Stress results from two-

dimensional granular shear flow simulations using various collision models,” Physical

Review E, Vol. 71, Article 061307.

Lasinski, M.E., Curtis, J.S., and Pekny, J.F., 2004, “Effect of system size on particle-

phase stress and microstructure formation,” Physics of Fluids, Vol. 16, No. 2, pp. 265

– 273.

Lees, A.W. and Edwards, S.F., 1972, “Computer study of transport processes under

extreme conditions,” Journal of Physics C, Vol. 5, No. 15, pp. 1921 – 1929.

McNamara, S. and Young, W.R., 1992, “Inelastic collapse and clumping in a one-

dimensional granular medium,” Physics of Fluids A, Vol. 4, No. 3, pp. 496 – 504.

