DEM Modeling: Lecture 03 The Hard-Particle Algorithm Collision Detection

When Two Spheres Collide...

• A collision will occur between two spheres when the magnitude of the position of one sphere relative to the other is equal to the sum of sphere radii.

$$|\mathbf{x}_{1} - \mathbf{x}_{2}| = (r_{1} + r_{2})$$

- Two approaches for marching forward in time
 - Time-Step Driven: time proceeds in small increments
 - Event Driven: time proceeds from collision to collision

Time Step Driven Algorithm

 Increment the particle velocities and positions in small time steps (Hopkins and Louge, 1991)

$$\dot{\mathbf{x}}_{n+\frac{1}{2}} = \dot{\mathbf{x}}_{n-\frac{1}{2}} + \ddot{\mathbf{x}}_{n-1}\Delta t$$
$$\mathbf{x}_{n} = \mathbf{x}_{n-1} + \dot{\mathbf{x}}_{n+\frac{1}{2}}\Delta t$$

(Verlet/leapfrog algorithm – other time integration schemes to be discussed in a different lecture)

• Collisions occur when:

$$\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right| \leq (r_{1}+r_{2})$$

Time Step Driven Algorithm...

- Choose time step so that a particle moves a fraction of its diameter during each time step.
 - a function of particle size and speed, not a function of particle material properties (as is the case with the soft-particle method)
 - larger time steps \Rightarrow faster sims, but larger overlaps and more error (more on this topic later in this lecture)
 - can include non-collision forces (e.g. aerodynamic, electrostatic, gravitational) acting on particles between collisions by determining a particle's acceleration using Newton's Laws
- Still need to check for collisions between particles

Brute Force Coarse Contact Detection

- Assume a system contains *N* particles
- To determine if contact occurs between any two particles
 - could check for contacts between all possible particle pairs:
 - particle 1: *N*-1 contact checks
 - particle 2: *N*-2 contact checks
 - particle *N*-1: 1 contact check
 - particle *N*: 0 contact checks
 - total # of contact checks:

$$(N-1)+(N-2) + ... + 1 = N(N-1)/2 \sim O(N^2)$$

- aka "naïve" contact detection
- There are more efficient ways of checking for contacts!
 - neighboring-cell contact detection scheme
 - nearest-neighbor contact detection scheme
 - sweep and prune

Neighboring Cell Coarse Contact Detection

(More on coarse contact detection in a different lecture.)

• divide the workspace into a grid of cells

- for each cell, maintain a list of the particles contained within that cell
- for a given particle, only check for contact between other particles in its own cell and neighboring cells
- cell size may be smaller than particle size, a single particle may occupy multiple cells

double linked lists are often used to maintain the cell lists

For particle 1, in cell (i, j), check for contact against: cell (i-1, j-1): particle 7 cell (i-1, j): particles 2 and 9 cell (i-1, j+1): cell (i, j-1): particle 3 cell (i, j): cell (i, j+1): particle 4 particle 8 cell (i+1, j-1): cell (i+1, j): particle 5 cell (i+1, j+1):

A Time Step Algorithm Issue

• It is possible to have more than two particles colliding simultaneously using a time step algorithm.

k

- likelihood decreases as time step decreases
- could use a multi-time step approach move backwards in time if multiple overlaps occur and then move forward again with a smaller time step
- could perform two hard particle collisions, one after the other (collisions in rapid succession), and accept the error associated with the calculation

Time Step Driven Flowchart

Event Driven Algorithm

 Assume particles move in ballistic trajectories between impacts

$$\mathbf{x}_{1}(t) = \frac{1}{2} \ddot{\mathbf{x}}_{01}(t - t_{01})^{2} + \dot{\mathbf{x}}_{01}(t - t_{01}) + \mathbf{x}_{01}$$
$$\mathbf{x}_{2}(t) = \frac{1}{2} \ddot{\mathbf{x}}_{02}(t - t_{02})^{2} + \dot{\mathbf{x}}_{02}(t - t_{02}) + \mathbf{x}_{02}$$

where the subscript "0" represents the conditions immediately *after* the previous collision

Event Driven Algorithm...

• A collision occurs when

$$\left|\mathbf{x}_{2}\left(T\right)-\mathbf{x}_{1}\left(T\right)\right|=\left(r_{2}+r_{1}\right)$$

where T is the time when the collision occurs.

• Substituting and simplifying gives:

$$a_{4}T^{4} + a_{3}T^{3} + a_{2}T^{2} + a_{1}T + a_{0} = 0$$

where $a_{4} = |\mathbf{A}|^{2}$ and $\mathbf{A} = \frac{1}{2}(\ddot{\mathbf{x}}_{01} - \ddot{\mathbf{x}}_{02})$
 $a_{3} = 2(\mathbf{A} \cdot \mathbf{B})$ $\mathbf{B} = -\ddot{\mathbf{x}}_{01}t_{01} + \dot{\mathbf{x}}_{01} + \ddot{\mathbf{x}}_{02}t_{02} - \dot{\mathbf{x}}_{02}$
 $a_{2} = 2(\mathbf{A} \cdot \mathbf{C}) + |\mathbf{B}|^{2}$ $\mathbf{C} = \frac{1}{2}\ddot{\mathbf{x}}_{01}t_{01}^{2} - \dot{\mathbf{x}}_{01} + \mathbf{x}_{01} - \frac{1}{2}\ddot{\mathbf{x}}_{02}t_{02}^{2} + \dot{\mathbf{x}}_{02} - \mathbf{x}_{02}$
 $a_{1} = 2(\mathbf{B} \cdot \mathbf{C})$
 $a_{0} = |\mathbf{C}|^{2} - (r_{1} + r_{2})^{2}$

Event Driven Algorithm...

- Use Bairstow's Method to solve the quartic equation (see, for example, Hoffman, 2001).
 - factors out quadratic equations
 - uses an iterative Newton's approach to determining the coefficients for the quadratic equations

Δ

$$a_4T^4 + a_3T^3 + a_2T^2 + a_1T + a_0 = 0 \Longrightarrow (m_2T^2 + m_1T + m_0)(n_2T^2 + n_1T + n_0) = 0$$

• Note that when the accelerations are identical, then:

$$\begin{aligned} \mathbf{A} &= \mathbf{0} & \mathbf{A}_{4} &= \mathbf{0} \\ \mathbf{A} &= \mathbf{0} & a_{3} &= \mathbf{0} \\ \ddot{\mathbf{x}}_{01} &= \ddot{\mathbf{x}}_{02} \Rightarrow \mathbf{B} &= \dot{\mathbf{x}}_{01} - \dot{\mathbf{x}}_{02} & \Rightarrow \mathbf{B} &= \dot{\mathbf{x}}_{01} - \dot{\mathbf{x}}_{02} & \Rightarrow a_{2} &= \left| \mathbf{B} \right|^{2} \\ \mathbf{C} &= \frac{1}{2} \ddot{\mathbf{x}}_{01} t_{01}^{2} - \dot{\mathbf{x}}_{01} + \mathbf{x}_{01} - \frac{1}{2} \ddot{\mathbf{x}}_{02} t_{02}^{2} + \dot{\mathbf{x}}_{02} - \mathbf{x}_{02} & a_{1} &= 2 \left(\mathbf{B} \cdot \mathbf{C} \right) \\ a_{0} &= \left| \mathbf{C} \right|^{2} - \left(r_{1} + r_{2} \right)^{2} \\ a_{2} T^{2} + a_{1} T + a_{0} &= \mathbf{0} \end{aligned}$$

Event Driven Algorithm...

• A collision will occur when:

$$T = \frac{-a_1 - \sqrt{a_1^2 - 4a_2a_0}}{2a_2}$$

- complex values for $T \Rightarrow$ particles never collide with each other
- $T < \max(t_{01}, t_{02}) \Rightarrow$ particles collide in the past
- The larger positive root to the equation

$$T = \frac{-a_1 + \sqrt{a_1^2 - 4a_2a_0}}{2a_2}$$

is not considered since it corresponds to the time when $|\mathbf{x}_2 - \mathbf{x}_1| = (r_2 + r_1)$ when particles are allowed to pass through each other

Double Linked Lists

Double Linked Lists...

- C++ Standard Template Library (STL) has a double-linked list class
 - highly recommend for use minimize chance of memory allocation/leak errors when programming
- Examples of miscellaneous commands:

```
#include <list.h>
```

```
list<double> L;
```

```
double value1 = 1.0, value2 = 2.0, value 3 = 3.0;
```

```
L.clear();
```

```
L.push_front(value1);
```

```
L.push_front(value3);
```

```
L.push_back(value2);
```

L.sort();

- To learn more:
 - Google "C++ STL list"

An Example Collision List Scenario

1. Example collision list prior to collision resolution

(6,8): T = 3.2(2,5): T = 3.4(4,6): T = 4.0(1,9): T = 4.1(8,9): T = 4.3(5,6): T = 4.4

2. Perform collision resolution for particles in the first element in list.

$$(\mathbf{x}_6, \dot{\mathbf{x}}_6, \mathbf{x}_8, \dot{\mathbf{x}}_8)^{-} \Rightarrow (\mathbf{x}_6, \dot{\mathbf{x}}_6, \mathbf{x}_8, \dot{\mathbf{x}}_8)^{+}$$

3. Remove references to particles involved in the collision.

(2,5):
$$T = 3.4$$

(1,9): $T = 4.1$

An Example Collision List Scenario...

- 4. Calculate new collision times for the particles involved in the collision using the post-collision states. Is potentially a 2*N* calculation, *e.g.* check 6 against 1, 2, 3,... and 8 against 1, 2, 3,
- 5. Add new collisions to collision list (only those with collision times greater than the current time) and sort in ascending order based on collision time.

(4,6):
$$T = 3.3$$

(2,5): $T = 3.4$
(8,9): $T = 3.9$
(1,9): $T = 4.1$

Another Collision Detection Approach

- Rather than perform a 2*N* collision detection step after each collision, use a neighboring cell approach.
- The collision list should only include particle collisions with particles in the current cell and neighboring cells (*e.g.* red checked with blue).
- The collision list will include "collisions" between a particle's center and the grid walls (red cell). For non-accelerating particles, this is a simple linear calculation for collision time.
- When a particle/grid wall "collision" occurs, do not change the particle state, but instead move the particle to a new cell and re-calculate collision times with the new walls and particles within the neighboring cells.
- Use a cell size equal to the particle diameter to minimize the number of collision detection calculations.

Solving for Quartic Roots

```
// Initial guesses for roots.
                                                               if ((denom != 0.0) && (count < 1000)) {
if (t > 0.0) {
                                                                delta r = (-b1*c2 + b0*c3)/denom;
 r = 2.0*t;
                                                                delta s = (-b0*c2 + b1*c1)/denom;
 s = -t*t;
                                                                r += delta r;
} else {
                                                                s += delta s;
 r = s = 1.0:
                                                                count++;
}
                                                                if ((fabs(delta r) > tol) || (fabs(delta s) > tol)) 
                                                                 flag = 1;
// Solve by applying Bairstow's method.
                                                                }
count = 0;
                                                               } else {
do {
                                                                // perturb the r and s values and start again
 flag = 0;
                                                                r = 500.0*(0.5-(double) rand()/(double) RAND MAX);
                                                                s = 500.0*(0.5-(double) rand()/(double) RAND MAX);
 b4 = a4:
                                                                count = 0;
 b3 = a3 + r*b4:
                                                                flag = 1;
 b2 = a2 + r*b3 + s*b4:
 b1 = a1 + r^{*}b2 + s^{*}b3:
                                                             } while (flag != 0);
 b0 = a0 + r*b1 + s*b2:
                                                             m2 = 1.0:
 c4 = b4;
                                                             m1 = -r:
 c3 = b3 + r^{*}c4:
                                                             m0 = -s:
 c2 = b2 + r^{*}c3 + s^{*}c4;
                                                             n2 = a4:
 c1 = b1 + r^{*}c2 + s^{*}c3:
                                                             n1 = a3 + a4^{*}r;
                                                             n0 = -a0/s;
  denom = c2*c2 - c1*c3:
```

Solving a Quadratic Equation

The normal approach:

$$T = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2 a_0}}{2a_2}$$

but if $a_1^2 >> 4a_2a_0$, then

$$T = \frac{-a_1 \pm a_1'}{2a_2}$$
 where $a_1' = \sqrt{a_1^2 - 4a_2a_0} \approx a_1$

and cancellation will occur for the "-" root.

A better approach to avoid cancellation error:

$$q = -\frac{1}{2} \left[a_1 + \operatorname{sgn}\left(a_1\right) \sqrt{a_1^2 - 4a_2 a_0} \right]$$
$$T = \frac{q}{a_2}, \frac{a_0}{q}$$

```
if (a2 != 0.0) { // check to see if a linear equation
  if ((temp = a1*a1 - 4.0*a2*a0) < 0.0)
   root1 = root2 = NaN; // imaginary roots
 else {
   if (a1 == 0.0) {
    root1 = sqrt(-a0/a2);
    root2 = -root1;
   } else {
    if (a1 < 0.0)
     q = -0.5*(a1 - sqrt(temp));
    else
      q = -0.5*(a1+sqrt(temp));
    root1 = q/a2;
    root2 = a0/q;
   }
  }
} else { // a linear eqn, not a quadratic
  if (a1 != 0.0)
   root1 = root2 = -a0/a1:
 else // a0 = 0
   root1 = root2 = NaN; // no roots to solve for
}
```

Inelastic Collapse

- e.g., McNamara and Young (1992)
- Occurs when collisions occur in rapid succession
 - e.g., a particle coming to rest on a surface
 - \Rightarrow an infinite number of collisions occurs in finite time
- Problematic for an event driven approach
 - inefficient when many collisions occur in a short amount of time
 - → can't be used to simulate granular materials with long lasting contacts without computational algorithm "fixes" or using a time-step approach
- Inelastic collapse is more likely to occur when
 - − normal coeff. of rest. is small (e.g. $\varepsilon_N \leq 0.6$)
 - the solids fraction is large (less significant than $\varepsilon_{\rm N}$)

Time Step vs. Event Driven

- Consider the pure shear, 2D simulations by Ketterhagen *et al*. (2005)
 - Lees-Edwards (1972) boundary conditions with shear rate γ = U/L
 - calculate stresses in the domain
 - use time step and event driven approaches
 - compare results to kinetic theory predictions
 - relative overlap, *∂ld*, proportional to time step, *∆t*

$$\Delta \dot{\mathbf{x}}_C \sim \gamma d$$
 and $\delta \sim \Delta \dot{\mathbf{x}}_C \Delta t \implies \frac{\delta}{d} \sim \gamma \Delta t$

Stress results from the time step driven algorithm for $\varepsilon = 0.9$ (a) v = 0.1, and (b) v = 0.5. For sufficiently small time steps (relative overlap is proportional to Δt), the stresses approach an asymptotic value. As the time step increases (*i.e.* overlap increases), the error increases. The horizontal lines show relative error thresholds of ± 2.5%. Open symbols: kinetic contribution, closed symbols: collisional contribution. Squares: xx component, triangles: -xy component, and diamonds: yy component.

Time Step vs. Event Driven...

Percent error in stress results as compared to the asymptotic values (equivalent to the event driven results) for the time step driven model at (a) ε = 0.9 and (b) ε = 0.5 and a range of solid fractions.

Time Step vs. Event Driven...

- The time step driven approach can be more computationally efficient than the event-driven approach at large solid fractions where frequent collisions occur.
 - larger errors, however, as solid fraction, relative impact speed, and time step increase
- As the time step decreases, results from the time step driven algorithm approach those from event driven algorithm
- One cannot easily model the effects of other forces such as electrostatic or aerodynamic forces if an event driven approach is used. These effects can be modeled using a time step driven approach.

Summary

- Hard-particle simulations are either:
 - time step driven
 - time proceeds in sufficiently small increments
 - can incorporate forces on particles between collisions
 - is not subject to inelastic collapse
 - slower for dilute systems, faster for dense systems
 - may have multi-particle collisions
 - errors due to overlaps increase as solid fraction, time step, and relative impact speed increase
 - event driven
 - time proceeds from collision to collision
 - computational algorithm utilizes a "collision list"
 - simulation can suffer from inelastic collapse
 - slower for dense systems, faster for dilute systems

References

- Hoffman, J.D., 2001, *Numerical Methods for Engineers and Scientists*, Marcel-Dekker, New York.
- Hopkins, M.A. and Louge, M.Y., 1991, "Inelastic microstructure in rapid granular flows of smooth disks," *Physics of Fluids A*, Vol. 3, No. 1, pp. 47 57.
- Ketterhagen, W.R., Curtis, J.S., and Wassgren, C.R., 2005, "Stress results from twodimensional granular shear flow simulations using various collision models," *Physical Review E*, Vol. 71, Article 061307.
- Lasinski, M.E., Curtis, J.S., and Pekny, J.F., 2004, "Effect of system size on particlephase stress and microstructure formation," *Physics of Fluids*, Vol. 16, No. 2, pp. 265 – 273.
- Lees, A.W. and Edwards, S.F., 1972, "Computer study of transport processes under extreme conditions," *Journal of Physics C*, Vol. 5, No. 15, pp. 1921 1929.
- McNamara, S. and Young, W.R., 1992, "Inelastic collapse and clumping in a onedimensional granular medium," *Physics of Fluids A*, Vol. 4, No. 3, pp. 496 – 504.