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Introduction

* Hard particle simulations are deterministic - given the
same initial conditions the final results will be the same

— the state of every particle in the system and all particle
Interactions are determined using physical laws

« The term “hard-particle” refers to the fact that particles
are considered to be perfectly rigid
— = particles do not deform during a collision
— = collisions occur instantaneously
— = only binary (two particle) collisions occur

« Used most often for modeling dilute, energetic granular
flows
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Collision Dynamics

J= j Fdt
t

collision

My, Iy, 1,

Assuming spheres
= 1=2/mr?
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moment of inertia

impulse of momentum
acting on particle 1 due

to collision with particle 2
unit vector pointing from the
center of particle 1 to the center
of particle 2
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Collision Dynamics...

« Unit normal vector for the contact (assuming spheres)

X, =X

n-=

|X2_X1|

« Velocity of particle 2 relative to particle 1 at the point of
contact

N

X, o =X, +0, xrh
X, =X, +0, x(-nn)

-X, . =(X, - %)~ (0, X0+, x;0)
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Collision Dynamics...

« Unit tangential vector for the contact

— perpendicular to unit normal and points in the direction of the
relative contact velocity just prior to the collision

A, = (A%, -R)h+(AX; -§)8
.ﬁ)
.ﬁ)

A
=

A, —(A%
A%, —(Ax

S =

=

ol

« Normal and tangential components of the impact velocity

AX
AX

n c-n
-

o C
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Collision Dynamics...

« Conservation of linear momentum for each particle

ST J

R X, =X —

ml(xl—xl)—J 1 L

— 1

mz(x2 —xz):—J o i J
2 T 2

m,

« Conservation of angular momentum for each particle

R
11(031+_(01_)=7”1ﬁ><J @ = +I_1(nXJ)
— 1
Iz(cog—co;)z(—rzn)X(—J) m;:m;+;—2(ﬁxJ)
2
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Collision Dynamics...

Consider the change in the relative contact speed after and before
the collision

AX. - Ax. = (%5 —%; )= (X %, ) -1 (0] —0, )xh-r (0] -0, )xh
J J . . . .
— _2 (nxJ)xn—Il—l(nxJ)xn

1 1 R u R .
=— + J-| i [(nxJ)xn]
m,m, Il 1,
Make use of a vector identity

(AxJ)xh=(n-n)J—(J-n)a=J—(J-n)n

—1
 Also use an effective mass

Vo= Vs 1
m m m,
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Collision Dynamics...

« Simplify

2 2
AKX, — AX =—i,J—[r +;L][J—(J-ﬁ)ﬁ

m

A Ve

=—| —+—+2|J+| —+—=|(J-n)n

m I I, I I

« Write the normal and tangential components of the
change in the relative impact speed

.y o\ A 1 7 . rtor .
sy oo Do oo (o=

1 2
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Collision Dynamics...

 Now consider the normal component of the impulse
3o = —m'(AXC = AXC ) = —m'[ (AX] -R) - (A% )

« Make use of the definition of the normal coefficient of
restitution, &

= [iﬁz n]:(Axg-ﬁ)z—gN(Axc-ﬁ)

(Note 0 < g, < 1 with g, = 0 being completely inelastic and
= 1 being perfectly elastic.

J-i=m'(1+¢,)(A% -A)
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Collision Dynamics...

« Consider the tangential component of the impulse

T R Lo 2 .
:_[m,+[1 +12j (AXC_AXC).SZ_(M,+L +12] (a2 )~ (8% 9)]
« Make use of the definition of the tangential coefficient of

restitution, &g

£, =— (ixz Z]:(Axg-é)z—gS(AXC-é)

>

J-

(Note: -1 < g5 < 1 with &5 = -1 being frictionless, g = 0 resulting
in no-slip and g = 1 being perfectly elastic.

1 5 N
J-§=( T ZJ (1+25)(Akc -3)

m I, I,
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Collision Dynamics...

* Re-write the collision impulse

J=(J3-a)i+(J-8)3

, o (1R EY  a\s
=m (1+<9N)(Axc-n)n+[m,+]1l +122j (1+gS)(AxC-s)s

* Note that since we’re assuming spheres, | = 2/:mr?

J=m'(1+&y)(A%c -0)A+2m'(1+&; ) (A%, )8

11
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Collision Model Parameters
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Figure 165. Coefficient of Restitution as a Function of Impact Velocity for Spheres of
the Same Size and Materia] *°% 320

Goldsmith, W., 1960, Impact: The Theory and Physical Behaviour of Colliding Solids, Dover.
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Contact Model Parameters...

Fig. 11.11. Measurements of the coefficient of restitution of a steel ball
on blocks of various materials (from Goldsmith, 1960). Cross ~ hard
bronze; circle — brass; triangle — lead. Lines of slope —3.
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i
/
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Velocity of impact V(m/s)

Johnson, K.L., 1985, Contact Mechanics, Cambridge University Press.
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Contact Model Parameters...

1.0 —

normal and oblique
impacts give similar
normal coefficients

of restitution

normal restitution coefficient, e_

0 1 2 3 4 5 B 7

impact velocity, V, (m s')

Fig. 12. Filled ciurcles are measurements of restitution coefficient for
normal mmpacts over a range of velocities. The line 15 Tabor's model (Eq.
10) fitted to these data. The open circles are e, values from oblique
mmpact experunents plotted against the normal velocity component. Alu-
munim alloy anwvil.

Gorham, D.A. and Kharaz, A.H., 2000, “The measurement of particle rebound characteristics,”
Powder Technology, Vol. 112, pp. 193 — 202.
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Contact Model Parameters...
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Fig. 3. Coefficient of restitution as a function of the mitial normal velocity vy [23,28-30].

Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., and Scherer, V., 2007, “Review and

extension of normal force models,” Powder Technology, Vol. 171, pp. 157 — 173.
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Contact Model Parameters...

1.0

O Brass, (Goldsmith, 1960)
0 Bronze, (Goldsmith, 1960)
® Y, DYNAZ2D, (Hogan, 1984)
A Y, DYNAZD, (Hagen, 1984)
Inverse 1/4 power (Johnson, 1985)

Coefficient of restitution, e

— — Empirical model (Walton & Braun, 1986)

0.1 PRI BT BN PRI
0.01 0.10 1.00 10.00 100.00
Velocity, m/s

FIGURE 25-3 Variation of coefficient of restitution with impact velocity.
Experimental results (open symbols) are for metal spheres (Goldsmith,
1960). Finite element calculations for elastic perfectly-plastic material model
are shown as filled circles (yield strength set so plastic deformation starts at
impact velocities exceeding 0.3m/s) and pluses (yield set to allow plastic
deformation only above 0.5m/s). Dashed line is representative curve for
empirical formula of Walton and Braun (1986). Solid lines are inverse 1/4
power of velocity, as predicted by fully plastic theory (Johnson, 1986).

Walton, O.R., 1993, “Numerical

simulation of inelastic, frictional
particle-particle interactions,” in
Particulate Two-Phase Flow,
Chap. 25, M.C.Roco ed.,
Butterworth-Heinemann.
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Collision Model Parameters...

* (1 - SN).~ Vimpact1/_5 as g{\l — 1 [ R . \\
in the visco-elastic regime N LTS X T
_ Kuwabara and Kono (1987) Y '
Vimpact <~1m/s _
* &N~ Vimpact " inthe elasto-  eos )
plastic regime 2 Ssemmon
— Johnson (1985) . L
Vimpact >~1m/s e
T e T T T T T
V,.I'mf"s)

FIG. 7. Coefficient of restitution vs normal impact velocity for
nylon spheres for different diameters on a log-log scale. The diam-
eter of the spheres 1s shown in the figure. VM denotes the viscoelas-
tic model. PM denotes plastic model.

Labous, L., Rosato, A.D., and Dave, R.N., 1997, “Measurements of
collisional properties of spheres using high-speed video analysis,”
Physical Review E, Vol. 56, pp. 5717-5725.
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Elastic-Perfectly Plastic Collisions

» Plastic yield starts to occur at

35 — e.g. two 3 mm diameter stainless steel (grade
2 w1072 Y 316) spheres (p = 8030 kg/m?, E = 193 GPa, n =
yield m'E"™ 0.35, Y = 310 MPa) = V,jqg ¥ 4 mm/s

— plastic yield is common

« Assuming fully plastic loading and elastic unloading:
%

3(Y)% %m'Virznpact

Ey ®—| —
N 8 E’ YRI3

Johnson, K.L., 1985, Contact Mechanics, Cambridge University Press.
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Stick-Slip Contacts

* In a real contact, the contact area has regions that “stick”
toward the center of the contact area and regions that
“slip” at the edges

pressure
A

stick zone
f\ slip occurs if:
\/pos'ition ‘T‘ > ‘ﬂp‘
contact area slip zone

« For sufficiently small pressures, the entire contact area
may slip
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Stick-Slip Contacts...

* Assume that the contact has two tangential
coefficients of restitution
— a constant tangential coefficient of restitution in the
stick-slip (SS) regime given by ;55
— a variable tangential coefficient of restitution in the
pure slip (PS) regime denoted by &>
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Stick-Slip Contacts...

* |n the stick-slip regime:

(AX: §) = —&g (AX; §) = (Ax—j,f) = —&g (Ax;f)) =W, =—&5,

. SS _ SS
Wy, ==& Y

(3:8)" =2m'(1+&°) (A%, -§)
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Stick-Slip Contacts...

* |n the pure-slip regime:

J-8)" =2m'(1+ &) (A%, -§) = sign (A% -§
(3-8)

— the magnitude of the tangential momentum impulse is
limited by sliding friction

(J-8 )P <(J- s) :>51gn(Ax s),u|J nj<2 ’(1+55 )(AXC )

SS) AXc -$
m'(1+ 2y )(A%c )

,uﬁ% (1+g§S)
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Stick-Slip Contacts...

* |n the pure-slip regime...

(3-8)" =2m'(1+ " )(Ax,. -§) =sign(Ax, -§) u|J R
2m'(1+& )(Ax, -8) = sign (A%, -§) um'(1+ &, )| A%, -
7 AX -h

-1

el :Elu(l—l—é‘]\,) A3

AX

- A
R _1}‘//1
‘S

2 Ak

7
Wy ==& W =y —{—#(ngv)

v, =y, —%,u(1+5N)sign(wl)

23
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Collision Model Parameters...

-0.5 ' :
0.0 0.5 1.0 1.5

FIG. 4. Results for binary collisions of 3 mm glass spheres. The dashed
line is a least-squares fit of the data through Eqgs. (14) and (15). The solid
[ine is the corresponding prediction of the model of Maw, Barber, and
Fawcett.”!? The insert is an enlarged view of the region where sticking
contacts occur.

Foerster, S.F., Louge, M.Y., Chang, H., and Allia, K., 1994,
“Measurements of the collision properties of small spheres,”

Physics of Fluids, Vol. 6, pp. 1108-1115.

AX; S dimensionless pre-collision
A tangential speed
AX, -n
. + A
AXc 'S dimensionless post-collision
A% -f tangential speed

sS _SS
v, =—& VY,

v, =y, _%ﬂ(1+5N)Sign(W1)
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Collision Model Parameters...

|
I_T-""T__
-
= =

tangential coefficient of restitution, &g

FIG. 6. Coefficient of tangential restitution 3 vs the cotangent of
the angle of incidence.

Labous, L., Rosato, A.D., and Dave, R.N., 1997, “Measurements of collisional properties of
spheres using high-speed video analysis,” Physical Review E, Vol. 56, pp. 5717-5725.

25



C. Wassgren, Purdue University

Measurements Methods

ralraction
meachanism
solancid

Foerster et al. (1994)

» High speed photography of marked, colliding

particles.
» Typically use “large” (> ~1 mm) particles for easy

visualization.

Labous et al. (1997)

26
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Summary

« Three parameter hard particle collision model

1 1 1 . X, X,
’: —|— n=
m  m m, ‘xz X,
X, o =X, +O, xrR sz:x2+c02><(—r2n) AX,. =X, . —X,,

J=m'(1+¢,)(Ak; -A)h+2m' (1+£;)(Ax, -§)8
U | U | . oA N .
X/ =X, +;1 X5 =X, o 0 =0, +]—11(n><J) o] =(o2+—2(n><J)
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Some Additional Comments

* The three parameter hard-particle model
(&, £5°°, and u) is a “lumped parameter”
model since the details of what occurs
during the collision are not described.

* The collision parameters ¢, £°°, and u
are not properties of a single material, but
are the properties of the two interacting
materials.

e Difficult to find and measure these model
parameters.

28
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