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Introduction

• Hard particle simulations are deterministic - given the 

same initial conditions the final results will be the same

– the state of every particle in the system and all particle 

interactions are determined using physical laws

• The term “hard-particle” refers to the fact that particles 

are considered to be perfectly rigid

– ⇒ particles do not deform during a collision

– ⇒ collisions occur instantaneously

– ⇒ only binary (two particle) collisions occur

• Used most often for modeling dilute, energetic granular 

flows
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x ≡ position

ωωωω ≡ angular velocity

m ≡ mass

r ≡ radius

I ≡ moment of inertia

J ≡ impulse of momentum 

acting on particle 1 due 

to collision with particle 2

≡ unit vector pointing from the 

center of particle 1 to the center 

of particle 2
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Collision Dynamics

collisiont
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Assuming spheres

⇒ I = 2/5mr
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Collision Dynamics…

• Unit normal vector for the contact (assuming spheres)

• Velocity of particle 2 relative to particle 1 at the point of 

contact 
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Collision Dynamics…

• Unit tangential vector for the contact

– perpendicular to unit normal and points in the direction of the 

relative contact velocity just prior to the collision

• Normal and tangential components of the impact velocity
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Collision Dynamics…

• Conservation of linear momentum for each particle

• Conservation of angular momentum for each particle
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Collision Dynamics…

• Consider the change in the relative contact speed after and before 

the collision

• Make use of a vector identity

• Also use an effective mass
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Collision Dynamics…

• Simplify

• Write the normal and tangential components of the 

change in the relative impact speed
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Collision Dynamics…

• Now consider the normal component of the impulse

• Make use of the definition of the normal coefficient of 

restitution, εN
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(Note: 0 ≤ εN ≤ 1 with εN = 0 being completely inelastic and 

εN = 1 being perfectly elastic. 
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Collision Dynamics…

• Consider the tangential component of the impulse

• Make use of the definition of the tangential coefficient of 

restitution, εS
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(Note: -1 ≤ εS ≤ 1 with εS = -1 being frictionless, εS = 0 resulting 

in no-slip and εS = 1 being perfectly elastic. 
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Collision Dynamics…

• Re-write the collision impulse

• Note that since we’re assuming spheres, I = 2/5mr
2
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Goldsmith, W., 1960, Impact:  The Theory and Physical Behaviour of Colliding Solids, Dover.
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Contact Model Parameters…

Johnson, K.L., 1985, Contact Mechanics, Cambridge University Press.
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Contact Model Parameters…

Gorham, D.A. and Kharaz, A.H., 2000, “The measurement of particle rebound characteristics,”

Powder Technology, Vol. 112, pp. 193 – 202.

normal and oblique 

impacts give similar 

normal coefficients 

of restitution
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Contact Model Parameters…

Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., and Scherer, V., 2007, “Review and 

extension of normal force models,” Powder Technology, Vol. 171, pp. 157 – 173.
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Contact Model Parameters…

Walton, O.R., 1993, “Numerical 

simulation of inelastic, frictional 

particle-particle interactions,” in 

Particulate Two-Phase Flow, 

Chap. 25, M.C.Roco ed., 

Butterworth-Heinemann.
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Collision Model Parameters…

Labous, L., Rosato, A.D., and Dave, R.N., 1997, “Measurements of 

collisional properties of spheres using high-speed video analysis,”

Physical Review E, Vol. 56, pp. 5717-5725.

• (1 – εN) ~ Vimpact
1/5 as εN→ 1

in the visco-elastic regime 

– Kuwabara and Kono (1987)

– Vimpact < ~1 m/s

• εN ~ Vimpact
-1/4 in the elasto-

plastic regime

– Johnson (1985)

– Vimpact > ~1 m/s
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• Plastic yield starts to occur at

• Assuming fully plastic loading and elastic unloading:
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Johnson, K.L., 1985, Contact Mechanics, Cambridge University Press.

– e.g. two 3 mm diameter stainless steel (grade 

316) spheres (ρ = 8030 kg/m3, E = 193 GPa, n = 

0.35, Y = 310 MPa) ⇒ Vyield ≈ 4 mm/s

– plastic yield is common
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Stick-Slip Contacts

• In a real contact, the contact area has regions that “stick”

toward the center of the contact area and regions that 

“slip” at the edges

• For sufficiently small pressures, the entire contact area 

may slip

contact area

pressure

position

slip zone

stick zone

pτ µ>
slip occurs if:
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Stick-Slip Contacts…

• Assume that the contact has two tangential 

coefficients of restitution

– a constant tangential coefficient of restitution in the 

stick-slip (SS) regime given by εSSS

– a variable tangential coefficient of restitution in the 

pure slip (PS) regime denoted by εSPS
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Stick-Slip Contacts…

• In the stick-slip regime:
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Stick-Slip Contacts…

• In the pure-slip regime:

– the magnitude of the tangential momentum impulse is 

limited by sliding friction 
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Stick-Slip Contacts…

• In the pure-slip regime…
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Foerster, S.F., Louge, M.Y., Chang, H., and Allia, K., 1994, 

“Measurements of the collision properties of small spheres,”

Physics of Fluids, Vol. 6, pp. 1108-1115.
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Collision Model Parameters…

dimensionless pre-collision 

tangential speed

dimensionless post-collision 

tangential speed

SS PS
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Collision Model Parameters…

Labous, L., Rosato, A.D., and Dave, R.N., 1997, “Measurements of collisional properties of 

spheres using high-speed video analysis,” Physical Review E, Vol. 56, pp. 5717-5725.
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Measurements Methods

• High speed photography of marked, colliding 

particles.

• Typically use “large” (> ~1 mm) particles for easy 

visualization.

Labous et al. (1997)

Foerster et al. (1994)
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Summary

• Three parameter hard particle collision model
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Some Additional Comments

• The three parameter hard-particle model 

(εN, εSSS, and µ) is a “lumped parameter”

model since the details of what occurs 

during the collision are not described.

• The collision parameters εN, εSSS, and µ
are not properties of a single material, but 

are the properties of the two interacting 

materials.

• Difficult to find and measure these model 

parameters.
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