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DEM Modeling:  Lecture 01

Introduction
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Sample Previous Projects

• Soft-particle DEM simulations of 2-D granular flow in a 

high-shear mixer 

• A review of continuum hydrodynamics using molecular 

dynamics  

• A 3-D analytical geometry based contact detection 

procedure for sphero-cylinder shaped bodies

• An algorithm for contact detection of cylindrical bodies 

• Polygonal collision detection for DEM

• Discrete element modeling of a ball on a rotating plate

• A discrete element model for simulating fracture in solids
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Project Report Outline

• Introduction

• Background

• Theory/Algorithm Description

• Implementation

• Results

• Conclusions

• References

• Tables

• Figures

• Appendices (derivations, codes, etc.)
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Questions to Address

• Why use computational models?

• What is DEM?

• How is DEM different from other methods such 

as CFD and FEM?

• What are DEM’s strengths and weaknesses?

• What will be discussed in this course?
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• Experimental measurements of particulate flows 

are often difficult or expensive to make

– can’t easily investigate internal structure

• PEPT (Stewart et al., 2001)

• x-rays (Baxter et al., 1989)

• nuclear magnetic resonance (NMR) / magnetic resonance 

imaging (MRI) (Nakagawa et al., 1993)

• γ-ray tomography (Langston et al., 1997)

• radio pill (Dave et al., 1998)

• radioactive tracers (Larachi et al., 1995)

• intrusive probes

• “freezing” the system (Brone and Muzzio, 2000)

Motivation for Computational Modeling
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• Experimental measurements of particulate flows are 

often difficult or expensive to make…

– observations at boundaries

• behavior at boundaries isn’t necessarily the same as the internal 

behavior, e.g. side-wall convection (video), packing structure

– some quantities are difficult to measure

• e.g. inter-particle forces, coordination number, particle orientation 

and rotational speed

Motivation for Computational Modeling…
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Motivation for Computational Modeling…

• Some environments and properties are difficult 

to investigate experimentally

– e.g., inter-particle friction, modified gravity

• Computer models can be used to overcome 

these difficulties; however, care must be taken to 

address the following

– proper modeling of the physics

– computational issues such as: 

• stability, accuracy, duration, storage

– validation
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Motivation for Computational Modeling…

• reduce the number of experiments

• optimize design and operating conditions; allow for more 

creative design 

• computational models are well suited for parametric 

studies

⇒ “A case study of the economic benefit of the application 

of CFD in one chemical and engineered-material 

company over a six-year period conservatively estimated 

that the application of CFD generated approximately a 

six-fold return on the total investment in CFD.”

(Davidson, 2001)



C. Wassgren, Purdue University 9

Modeling Approaches

• Two broad classes of approaches for 

modeling particulate materials 

–continuum

–discrete
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Modeling Approaches…

• Continuum Approach

– treat as a continuous substance, ignore individual particles

– assumes the length scale of importance >> particle length scale

– apply conservation of mass, momentum, and energy to small 

regions of the material

– also need constitutive relations that define a particular substance, 

e.g. how stress and strain (or strain rate) are related for that 

substance

• e.g. Newtonian fluid behavior

• constitutive laws for particulate materials are not widely agreed upon, 

hundreds have been proposed, most are phenomenological (for dense 

flows in particular) (Cundall, 2001)

• several constitutive laws may be required to describe different regions 

of the flow

– solve the resulting equations numerically using methods such as 

finite differences, finite volumes, or finite elements
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Modeling Approaches…

• Continuum Approach…

– not well suited to investigate phenomena occurring at the length scale 

of a particle diameter

– some particulate system phenomena are highly dependent on particle 

level behavior, e.g. shear bands

– best suited to investigate large scale systems, e.g. at the unit operation 

scale
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Modeling Approaches…

• Discrete Approach

– e.g., the discrete element method (DEM)

– models the behavior of individual particles

– overall system behavior the result of individual interactions

– examples include:

• cellular automata (Baxter and Behringer, 1991)

• Monte Carlo methods (Rosato et al., 1986)

• hard-particle methods (Campbell and Brennen, 1982; Luding, 1995)

• soft-particle methods (Cundall and Strack, 1979; Walton and Braun, 

1986)

– these methods are used in fields other than granular flows

• traffic simulations, astronomy, computer networks, crowd dynamics, 

biosystems interactions, roller bearing dynamics
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Modeling Approaches…

• Discrete Approach…

– very good for investigating phenomena occurring at the length scale of a 

particle diameter

– not well suited for modeling larger scale systems exactly

• e.g. Vsystem = 1 L, d = 100 µm ⇒ ~108 particles

• however, can use DEM to approximate system behavior and gain insight

– need information at the particle scale, e.g. particle shape, particle-particle 

friction, particle mechanical properties, etc.
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Issues to Consider

• Make sure the physical model is a good one

– 2D/3D, viscous/inviscid, compressible/incompressible, 

laminar/turbulent, frictional/non-frictional, deformable/rigid, etc.

– CFD/FEM:  continuum methods – not suited for phenomena 

occurring at a particle length scale

– DEM:  force models, particle shape, degree of deformation, 

number of particles

– appropriate constitutive laws

– appropriate boundary conditions

• Make sure the computational model is a good one

– grid/element quality (discretization errors)

– convergence criteria

– time step / stiffness / model parameters

• Model validation
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