

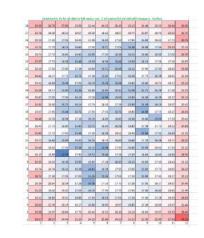
TN Thompson
Qiming Wang
Cindy Reiter
Millrock Technology, Inc

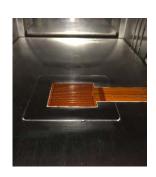
"The goal is to maintain an equivalent product temperature 'thermal history' between the lab and commercial processes."

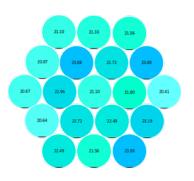
Principles of Lyophilization Cycle scale-up - Tchessalov, Dixon, Warne

Vial Heat Transfer Coefficient - Kv

1. Kv can be used to help with transfer of protocols between different freeze dryers


2. Methods to determine Kv


- A. Kv Gravimetric Method to determine Kv by measuring the weight loss per time during a short primary drying cycle
- B. Kv AccuFlux Method to determine Kv by measuring heat flow
 - . AccuFlux Heat Flow Measurement using a heat flux sensor between the shelf and vials


Objective

 Compare Kv Accuflux to Kv Gravimetric in a REVO Lab Scale Freeze Dryer (6 sf)

2. Compare Kv AccuFlux vs Kv Gravimetric in a MicroFD (19 Vials)

3. Develop Protocols in the MicroFD® and Transfer to the Revo

A. Review 'Thermal History'

Kv Gravimetric

Measuring Kv Gravimetrically

- 1. Add Water to Vials
 - A. 336 Vials, 5ml fill, 10 ml vial with igloo stopper
 - B. Tshelf = -20°C, Pchamber = 100 mT
- 2. Weigh Each Vial and Mark its Location on the Shelf
- 3. Freeze and Start Primary Drying
 - A. Freeze at 0.5°C/min to -40
- 4. Stop Primary Drying when Drying is stable
 - A. At Steady State Before the sublimation surface changes
 - B. IE: 300 minutes into run
- 5. Weigh Each Vial Calculate the Mass Loss per Time
 - A. For our experiments Time was determined during steady state in Primary Drying
- 6. Calculate Kv Grav
 - A. Per Vial for a map 336 calculations
 - B. Based on Batch Average Product Temp and Shelf Temp

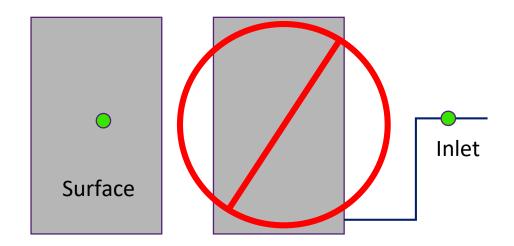
$$Kv \, grav = \frac{\left(\frac{dm}{dt}\right)Hs}{Av(Ts-Tb)}$$

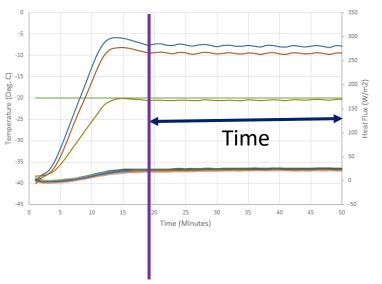
dm/dt = Mass loss/Time - Batch Avg
Ts = Shelf Temperature - Batch Avg
Tb = Product Temperature - Batch Avg
Hs = Heat of Sublimation
Av = Area (OD) per vial

Millrock Revo

Be Consistent in Measurement between Systems

1. Tshelf surface, not Tshelf inlet


- A. Tshelf surface provides the true Kv value
- B. Using T_{Inlet} will produce different results on different systems


2. TProduct – Batch Average

3. Time - Be consistent

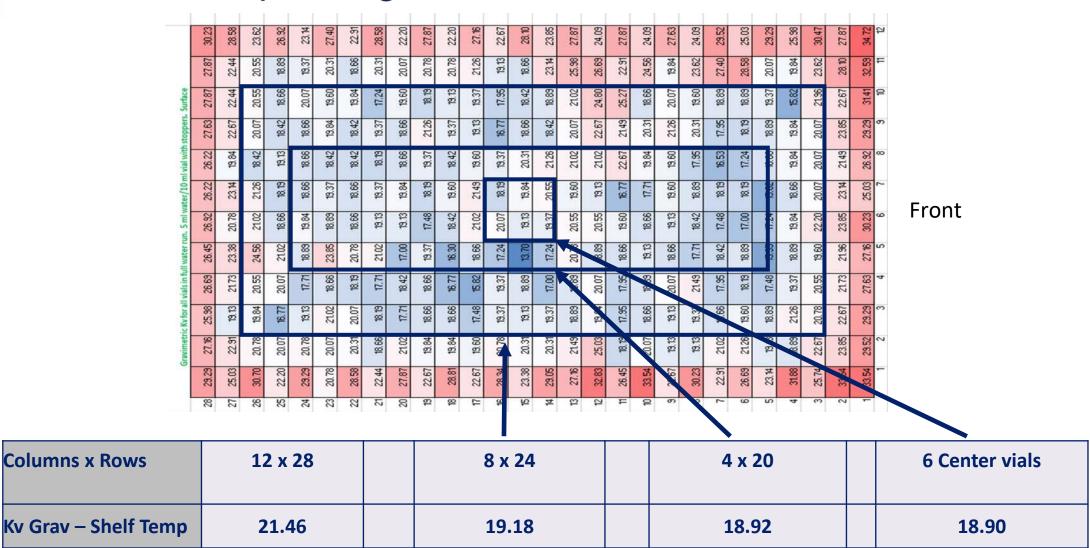
A. We used a quick ramp to set point and timed from steady state!

4. Always use partially stoppered vials Experimental aspects of Measuring Kv – Lindsay Wegiel

Kv Gravimetric 'Heat' Map – 12" x 24" shelf

10ml Vial, 5ml H₂O, Tshelf -20C, 100mT

Kv Gravimetric Based on


Tshelf_Surface (-20.3 °C)

	30.23	28.58	23.62	26.92	23.14	27.40	22.91	28.58	22.20	27.87	22.20	27.16	22.67	28.10	23.85	27.87	24.09	27.87	24.09	27.63	24.09	29.52	25.03	29.29	25.98	30.47	27.87	34.72	12
	27.87	22.44	20.55	\$6 \$6	T	20.31	18.66	20.31	20.02	20.78	20.78	21.26	19.13	18.66	23.14	25.38	26.69	22.91	24.56	13.84	23.62	27.40	T	20.02	13.84	23.62	28.10	32.59	=
. Surface	27.87	22.44	20.55	18.66	20.02	19.60	19.84	17.24	13.60	18.19	Kv	Bat	tch /	Ave	rage	e = 2	21.4	6 ¹⁷	18.66	20.02	13.60	£6.89	18.89	19.37	15.82	21.36	22.67	31.41	유
stoppers	27.63	22.67	20.02	18.42	18.66	19.84	18.42	19.37	18.66	21.26	19.37	19.13	16.77	99.98	18.42	20.07	22.67	21.48	20.31	21.26	20.31	17.35	18.19	\$3. 83.	19.84	20.02	23.85	29.29	တ
ml vial with	26.22	13.84	18.42	19.13	18.66	18.42	18.42	13.13	89.	19.37	18.42	13.60	19.37	20.31	21.26	2102	21.02	22.67	13.84	13.60	17.35	16.53	17.24	38.	19.84	20.02	21.49	26.92	00
water/10 n	28.22	23.14	21.26	18.19	18.66	19.37	18.66	19.37	19.84	18.19	13.60	21.43	F	19.84	20.55	19.60	19.13	16.77	17.71	19.60	88	18.19	18.19	15.82	18.66	20.02	23.14	25.03	7
un. 5 ml v	26.92	20.78	21.02	18.66	19.84	88	18.66	19.13	19.13	17.48	18.42	21.02		P	19.37	20.55	20.55	19.60	\$6 88	19.13	18.42	17.48	17.00	17.24	13.84	22.20	23.85	30.23	9
III water ri	26.45	23.38	24.56	21.02	18.89	23.85	20.78	21.02	17:00	19.37	16.30	18.66	17.24	13.70	17.24	20.78	88	18.66	19.13	18.66	17.71	18.42	88	15.35	18.89	13.60	21.96	27.16	S
I vials in full	26.69	21.73	20.55	20.02	17.71	18.66	18.19	17.71	18.42	89.	16.77	15.82	19.37	88	17.00	83.	20.02	T	88	20.02	21.43	17.35	10.13	17.48	19.37	TÊ	(F)	27.63	4
ic Kv for al	25.38	19.13	19.84	16.77	19.13	21.02	20.02	18.19	17.71	99.9	18.66	17.48	19.37	19.13	19.37	83.	19.84	17.35	89.0	13.13	19.37	18.66	13.60	83. 83.	21.26	Tâ	22.67	29.29	m
Gravimetric Ky for	27.16	22.91	20.78	20.02	20.78	20.02	20.31	18.86	21.02	19.84	13.84	13.60	20.78	20.31	20.31	21.43	25.03	18.19	20.02	19.13	19.13	21.02	21.26	19.13	83	22.67	23.85	29.52	2
	29.29	25.03	30.70	22.20	29.29	20.78	28.58	22.44	27.87	22.67	28.81	22.67	28.34	23.38	29.05	27.16	32.83	26.45	33.54	22.67	30.23	22.91	26.69	23.14	31.88	25.74	33.54	33.54	•
Ī	8	23	8	ĸ	≉	ಣ	23	72	8	22	윤	₽	ф	ħΣ	左	ದ	52	=	유	ற	00	~	ω	Ŋ	4	က	2	-	

Front

Kv Variation Depending on Vial Selection – Full Shelf (12" x 24")

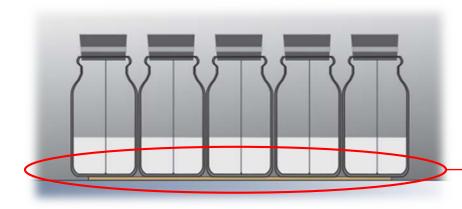
Kv Gravimetric

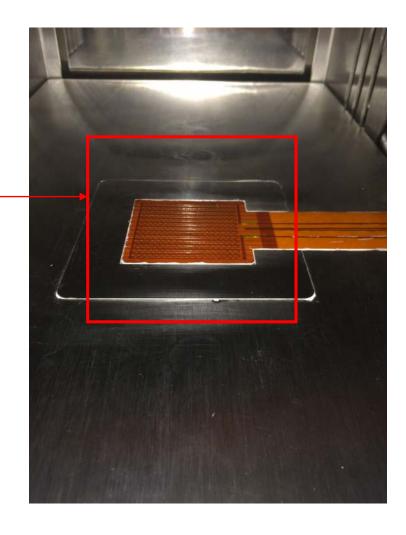
1. Advantages

- A. Data can be selected for desired results
 - i. Batch Average vs Center Vials vs Edge Vials

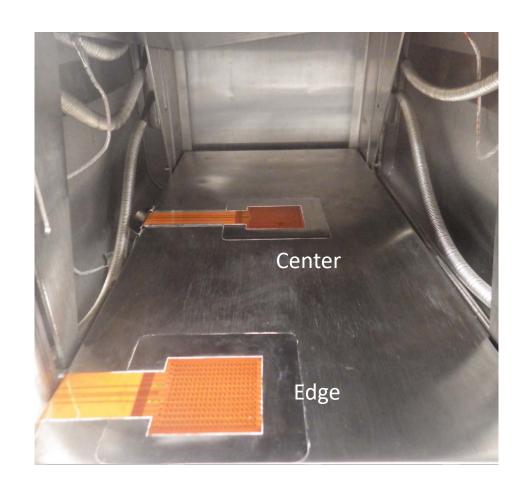
2. Disadvantages

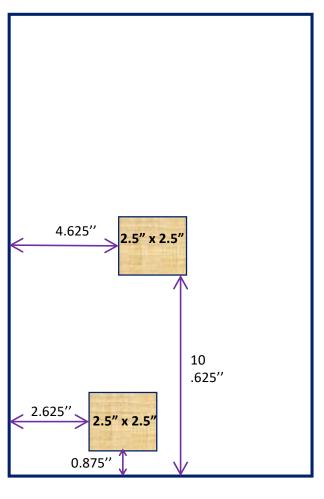
- A. Labor intensive and Time consuming
- B. Subject to error due to the large number of manual measurements
- C. Must use the batch average product temperature
- D. Calculation of time is subjective
 - i. Wait for stable sublimation
- E. Challenge to get Kv Gravimetrically for Production Units




Kv Determination Using AccuFlux®

AccuFlux®




- AccuFlux Sensor Size : ~ 2.5" x 2.5"
 - Installed directly on the surface of the shelf
- Measures
 - Heat Flux from Shelf to Vial
 - Shelf Surface Temperature
- Output in : Watts/m^2 = Joules/sec/m^2

Sensor Location on Shelf (12"x 24")



Kv Determination Using AccuFlux

Kv Other

Radiation

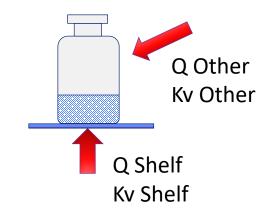
Gas Conduction

And Other Sources of Heating and Cooling

Kv = Kv AccuFlux Shelf + Kv Other

Gas Conduction, Radiation

How do we determine Kv without measuring Kv Other?



Kv Determination Using AccuFlux

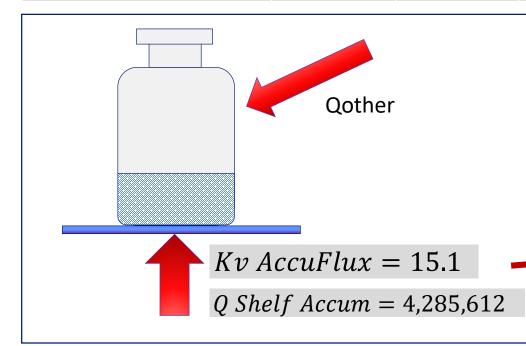
To find Kv:

- Perform a Full Primary Drying Cycle
 - Measure Kv Accuflux at Steady State

$$Kv \ AccuFlux \ Shelf = \frac{HF \ Shelf}{(T_S - T_b)}$$
at steady state

$$% Q Shelf = \frac{QShelf Accum}{(\Delta Hs * mass)}$$

Divide Kv AccuFlux by % Q Shelf to get Kv
 Total


$$Kv \ AccuFlux \ total = \frac{Kv \ AccuFlux \ Shelf}{\% \ Q \ Shelf}$$

HF – Heat Flux (W/sqM)
Hs – Heat of Sublimation (2834 J/g)
Mass – Mass of material sublimating
Kv AccuFlux – Heat Flow from Shelf
%Q Shelf – Heat flow measured divided by Total Heat of Sublimation
Kv total – Vial Heat Transfer Coeff

Kv Total Example

Variable	Value	UOM	Comment
Kv AccuFlux Measured	15.1	W/sqM/C	Measured at Steady State During Primary Drying
Q Shelf Total Measured	4,285,612	J	Measured by AccuFlux for Full Primary Drying Cycle
Q Sublimation	4,761,792	J	Mass of Material x Heat of Sublimation
% Q Shelf	90%		Q Shelf / Q Sublimation
Kv AccuFlux Total	16.78		Kv AccuFlux / % Q Shelf

Q Sublimation = 4761792 J

% Q Shelf =
$$\frac{Q \text{ Shelf Accum}}{Q \text{ Sublim}} = \frac{4,285,612 \text{ J}}{4,761,792 \text{ J}} = 90\%$$

$$Kv\ Total = \frac{Kv\ AccuFlux}{\%\ Q\ Shelf} = \frac{15.1}{90} = 16.78$$

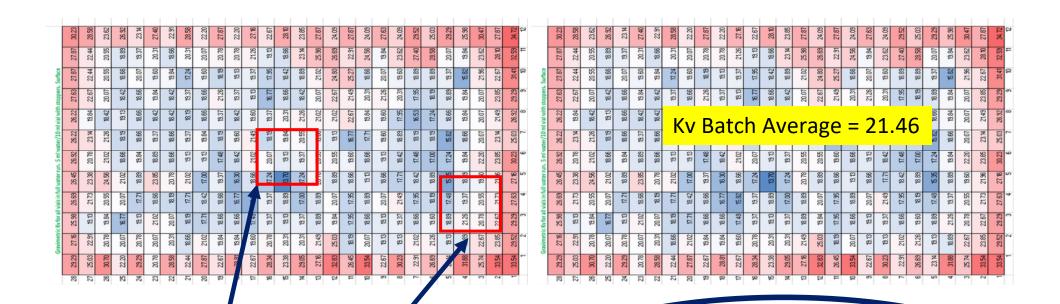
Kv in W/sqM/C

Kv AccuFlux vs Kv Gravimetric for Center Vials


30.23	28.58	23.62	26.92	23.14	27.40	22.91	28.58	22.20	27.87	22.20	27.16	22.67	28.10	23.85	27.87	24.09	27.87	24.09	27.63	24.09	29.52	25.03	29.29	25.38	30.47	27.87	34.72	12
27.87	22.44	20.55	18.89	19.37	20.31	18.66	20.31	20.02	20.78	20.78	21.26	19.13	18.66	23.14	25.38	26.69	22.91	24.56	19.84	23.62	27.40	28.58	20.02	19.84	23.62	28.10	32.59	
27.87	22.44	20.55	18.66	20.02	19.60	19.84	17.24	19.60	18.19	19.13	19.37	17.95	18.42	18.89	2102	24.80	25.27	18.66	20.02	19.60	18.89	18.89	19.37	15.82	2136	22.67	31.41	ę
27.63	22.67	20.02	18.42	18.66	19.84	18.42	19.37	18.66	21.26	19.37	19.13	16.77	18.66	18.42	20.02	22.67	21.49	20.31	21.26	20.31	17.35	18.19	18.89	19.84	20.02	23.85	29.29	တ
26.22	19.84	18.42	19.13	18.66	18.42	18.42	18.15	18.66	19.37	18.42	19.60	19.37	20.3	21.26	21.05	21.05	22.67	19.84	19.60	17.36	16.53	17.24	18.66	19.84	20.02	21.49	26.92	000
26.22	23.14	2126	18.19	18.66	19.37	18.66	19.37	19.84	18.19	19.60	2149	18.19	13.84	20.00	19.60	19.13	16.77	17.71	19.60	18.89	18.19	18.19	15.82	18.66	20.02	23.14	25.03	2
26.92	20.78	21.02	18.66	19.84	18.89	18.66	19.13	19.13	17.48	18.42	2102	20.02	19.13	40.07	73.55	20.55	19.60	18.66	19.13	18.42	17.48	17.00	17.24	19.84	22.20	23.85	30.23	9
26.45	23.38	24.56	21.02	18.89	23.85	20.78	2012	17.00	19.37	16.30	18.66	17.24	13.70	17.24	20.78	18.9	18.66	19.13	18.66	17.71	18.42	889	15.35	18.89	19.60	21.36	27.16	
26.69	21.73	20.55	20.02	17.71	18.66	18.19	17.71	18.42	18.66	16.77	15.82	19.37	18.89	18	18.89	20.02	17.95	19 33	20.07	21.49	17.35	18.19	17.48	19.37	20.55	21.73	27.63	4
25.38	19.13	19.84	16.77	19.13	21.02	20.02	18.19	17.71	18.66	18.66	17.48	19.37	19.13	19.37	19 43	19.84	17.35	18.66	19.13	7.37	18.66	19.60	18.89	21.26	20.78	22.67	29.29	e
27.16	22.91	20.78	20.02	20.78	20.02	20.31	18.66	2105	19.84	19.84	19.60	20.78	20.31	20.31	21.49	25.0	18.19	20.02	19.13	19.13	21.07	21.26	19.13	18.89	22.67	23.85	29.52	2
29.29	25.03	30.70	22.20	29.29	20.78	28.58	22.44	27.87	22.67	28.81	22.67	28.34	23.38	29.05	27.16	32.83	26.45	33.54	22.67	30.23	22.91	26.69	23.4	31.88	25.74	33.54	33.54	
8	22	88	ß	24	S	23	2	8	£Σ	æ	₽	\$	ħ	72	ದ	5	F	£	တ	00	2	9	S	4	m	2	-	

Columns x Rows	12 x 28	8 x 24	4 x 20	6 Center vials
KV Grav Center	21.46	19.18	18.92	18.90
Kv Grav StDEV	3.88	1.57	1.55	
Kv Accuflux Center			18.01	18.01

Within +/- 2.5 %!


Kv AccuFlux vs Kv Gravimetric for Edge Vials

Range	Outer 2 rings	Outer 3 rings	Accuflux Edge vials
KV Grav Edge	24.50	23.08	23.48
Kv AccuFlux Edge	23.71	23.71	23.71

Conclusion: Kv AccuFlux Correlates to Kv Gravimetric

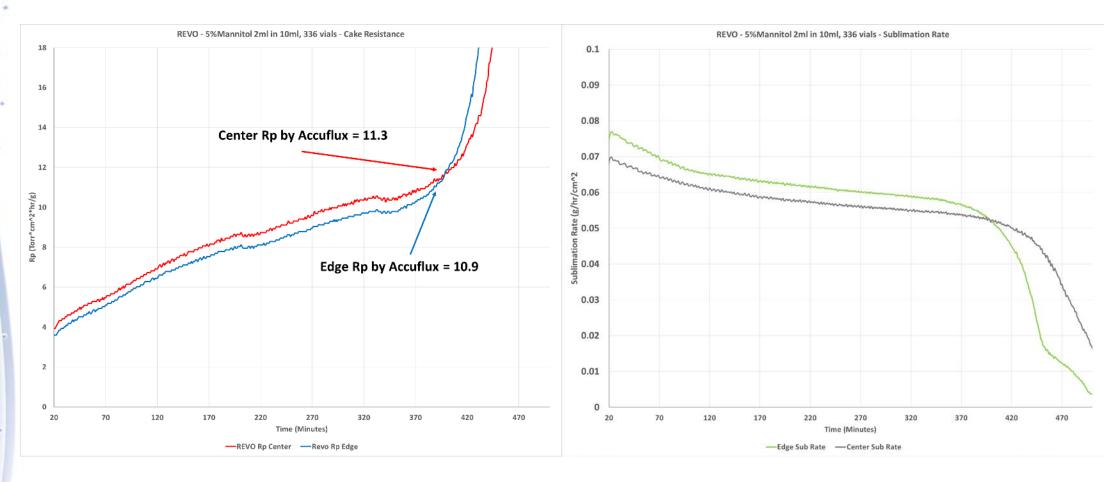
Kv AccuFlux	Kv AccuFlux
Center	Edge
18.01	23.71

Kv AccuFlux Avg	Kv Gravimetric
20.86	21.46

Kv Accuflux Avg = (Kv Center + Kv Edge) / 2

Kv in W/sqM/C

Determine Kv AccuFlux and Kv Gravimetric Correlation in a MicroFD[®]


What is the MicroFD[®]?

- 1. Process Small Batch 19 vials or less
- 2. Latest PAT Technologies
 - A. Controlled Nucleation
 - B. AccuFlux Heat Flow measurement and control
 - C. LyoSIM Center and Edge Vial simulation
 - D. LyoPAT Control System
- 3. Determines All <u>Critical Process Parameters</u>
 - A. Kv Vial Heat Transfer Coeff
 - B. dM/dt Mass Flow
 - C. Rp Cake Resistance
 - D.
- 4. Ability to Test the Effects of
 - A. Freezing Methods
 - B. Drying Conditions

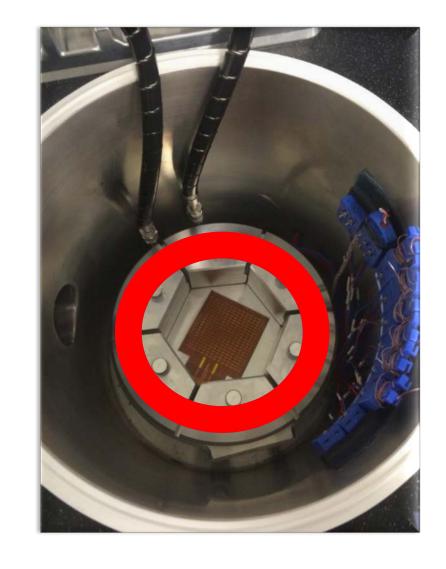

LyoPAT Example – Cake Resistance and Mass Flow

LyoSIM[®]– Modeling Center or Edge Vials

- Temperature Controlled Ring
 - Closely coupled to the vial stack
 - Independent control from shelf
 - Tracks/follows product temperature!
 - With Conduction Blocks for Different Sized Vials
- Model Center or Edge Vials By Programming the LyoSIM Temperature

Removable thermal conductors to accommodate different vials

How is LyoSIM used?

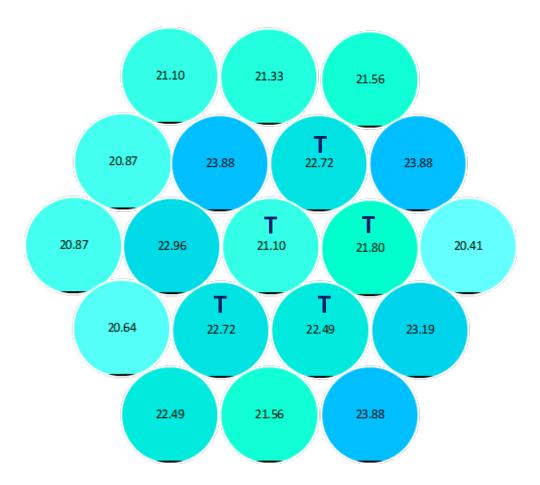

LyoSIM temperature can be programmed to follow the temperature of the product to simulate either center or edge vials

Primary Drying:

- i. Center Vial Effect
 - TLyoSIM =< Tproduct
 - E.g.: LyoSIM Temperature =Tproduct 2 °C

ii. Edge Vial Effect

- TLyoSIM > Tproduct
- E.g: LyoSIM Temperature = Tproduct + 5 °C

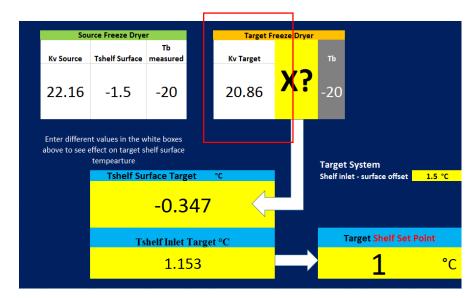


Gravimetric	Kv (W/m^2-C)
Batch Average	22.08
Inner 7 vials	22.53
Outer 12 vials	21.82
MicroFD 19-vial STDEV	1.12
REVO center vial (4x20) StDEV	1.55

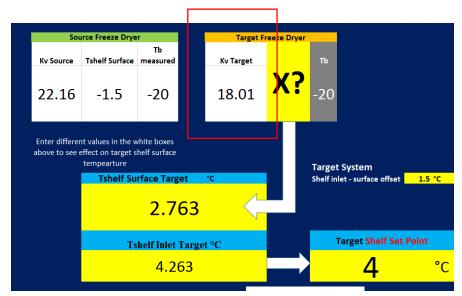
All 19 vials behave like center vials!

MicroFD Kv Gravimetric Results vs Kv Accuflux (center vials)

Gravimetric	Kv (W/m^2-C)	21.10 21.33 21.56
Batch Average	22.08	
Inner 7 vials	22.53	20.87
Outer 12 vials	21.82	T T
STDEV	1.12	20.87 22.96 21.10 21.80 20.41
Accuflux	Kv (W/m^2-C)	20.64 T T 22.49 23.19
Kv AccuFlux Shelf@300min	12.5	
%Q Shelf	56.4%	22.49 21.56 23.88
Kv AccuFlux Total after full run	22.16	Great Correlation!



Protocol Transfer from MicroFD to REVO Using Kv AccuFlux

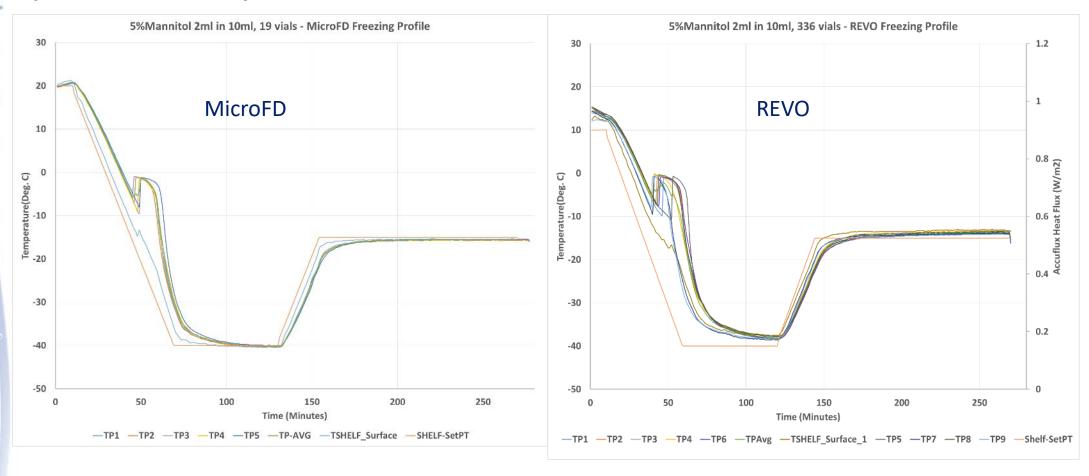


Protocol Transfer using Kv

Kv AccuFlux Batch Average

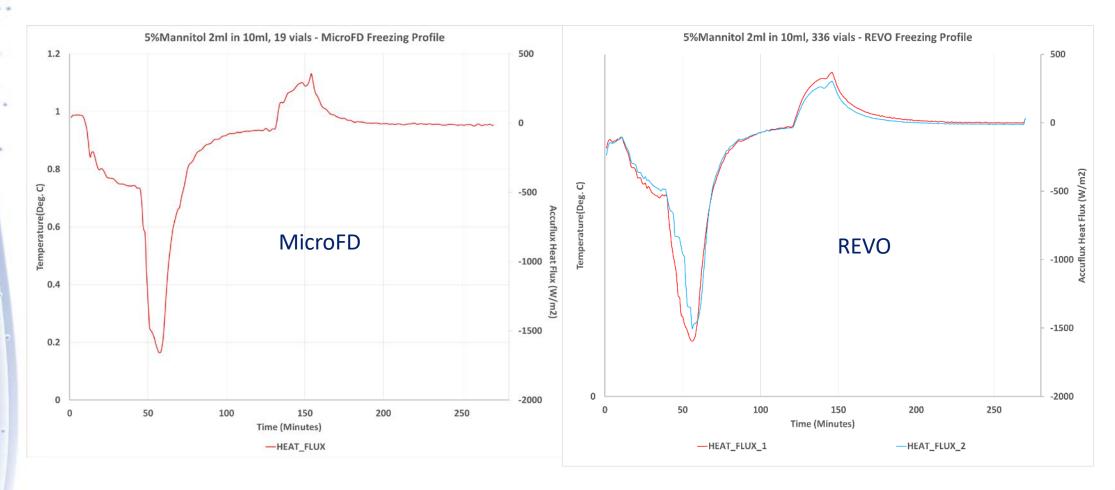
Kv AccuFlux Center Vials

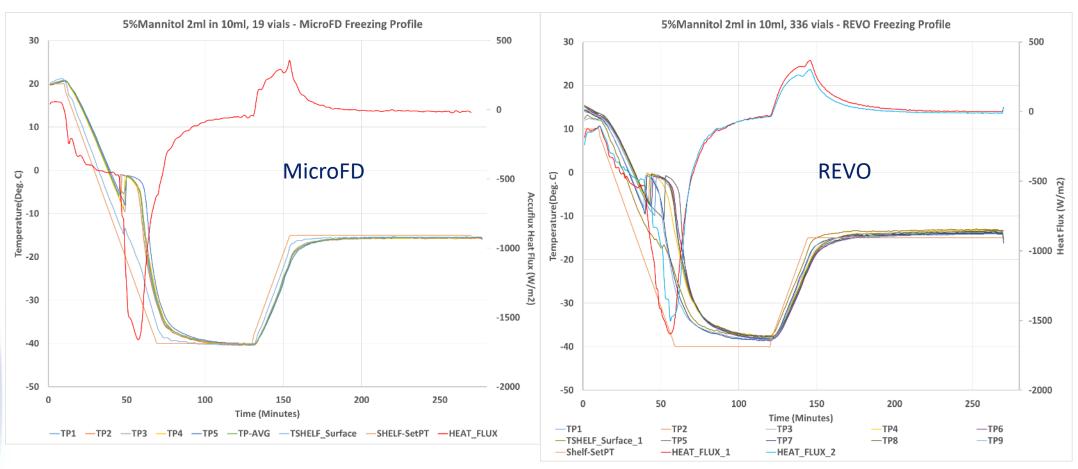
Kv Source – MicroFD Kv Target – REVO


5% Mannitol Experiments - Cycle Information

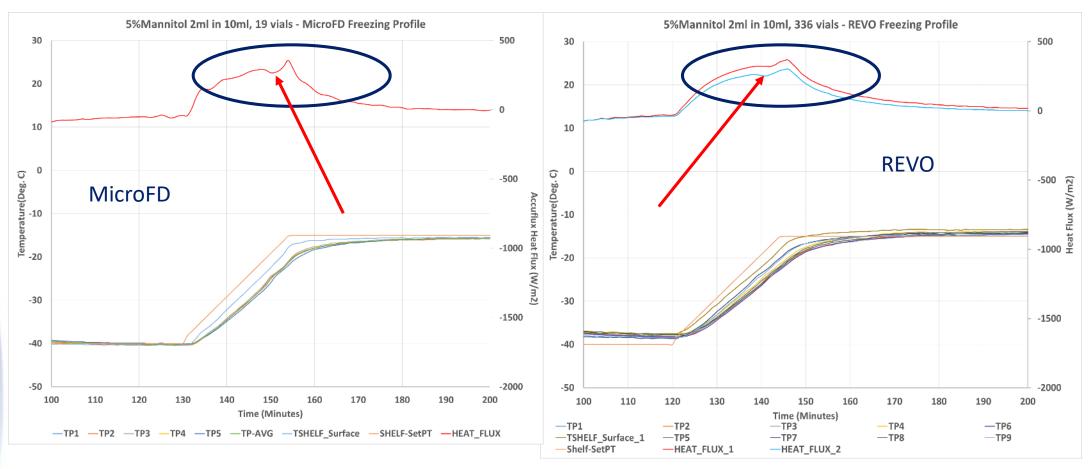
Setup	MicroFD	REVO
Material	5% Mannitol	5% Mannitol
Vial size	10 mL	10 mL
Fill Volume	2ml	2ml
Number of vials	19	336

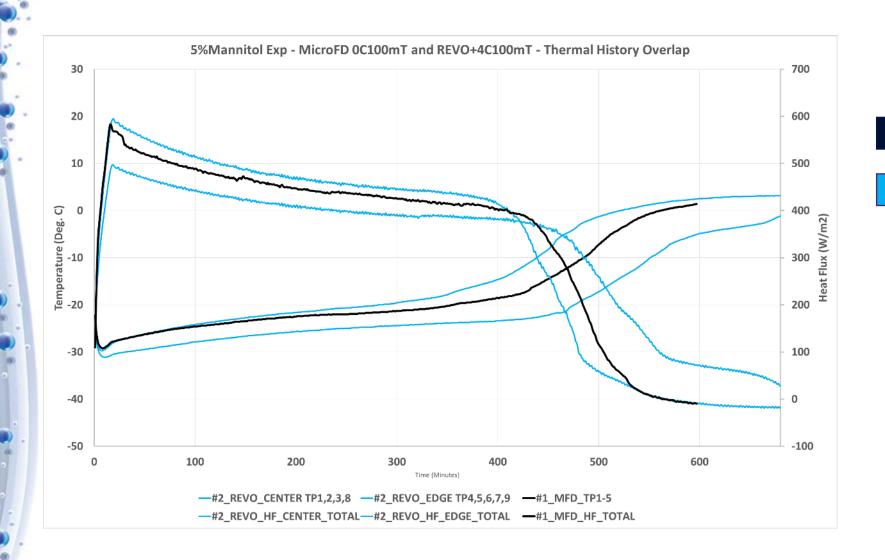
Protocol	MicroFD	REVO	REVO
Freezing	0.5 °C/min to -40 °C	0.5 °C/min to -40 °C	0.5 °C/min to -40 °C
Annealing for 2 hours	-15 °C	-15 °C	-15 °C
Kv Accuflux	22.16	20.86 (Batch Avg)	18.01 (Center Kv)
Primary Drying Shelf	0 °C	0 °C	+ 4 °C
Primary Drying Vacuum	100 mT	100 mT	100 mT


Freezing Comparison between MicroFD and REVO (without HF)

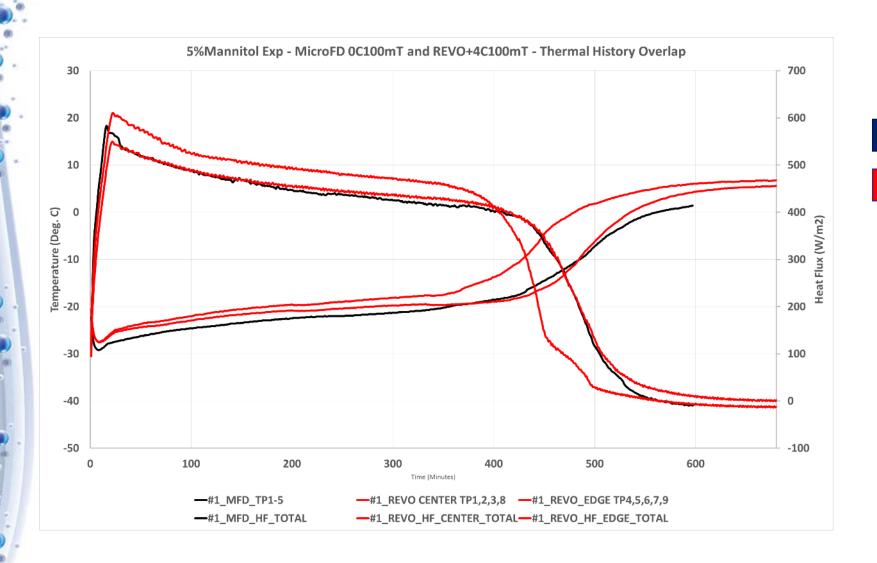


Freezing Comparison between MicroFD and REVO – Heat Flow


Freezing Comparison between MicroFD and REVO


Freezing Comparison between MicroFD and REVO – Secondary Crystallization?

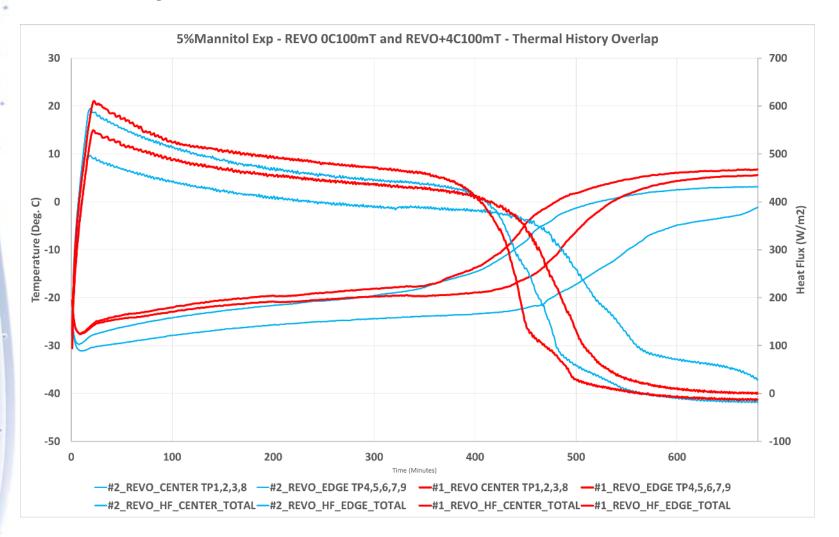
MicroFD and REVO – Baseline Thermal History Overlap



MicroFD@ 0C 100mT

REVO@ 0C 100mT

MicroFD and REVO – Transfer Thermal History Overlap



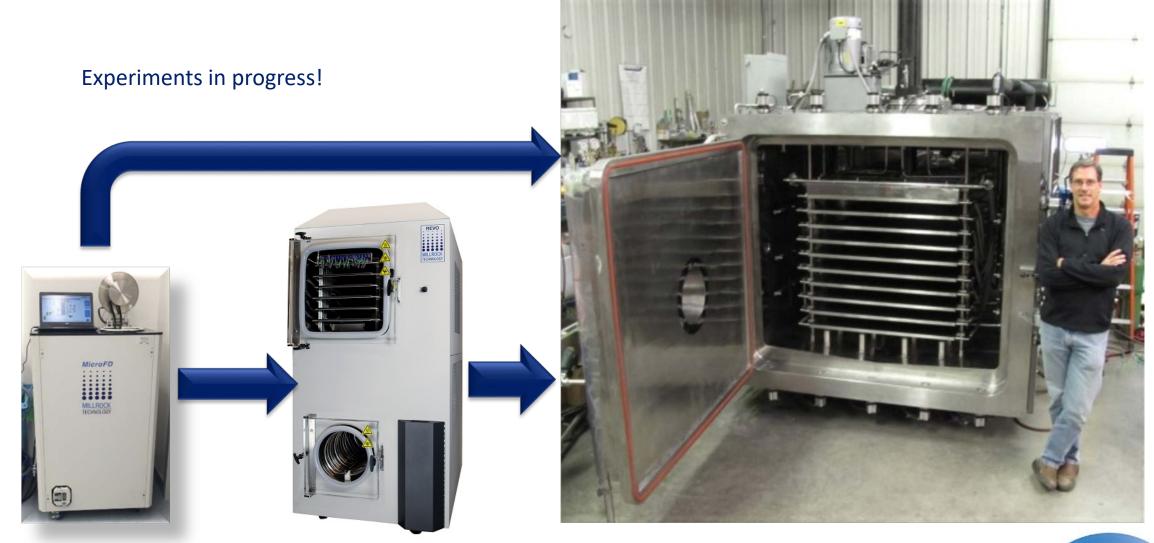
MicroFD@ 0C 100mT

REVO@ +4C 100mT

REVO Baseline vs REVO Transfer – Thermal History Overlap

REVO@ 0C 100mT

REVO@ 4C 100mT



- Kv AccuFlux can replace Kv Gravimetric.
 - Accuflux eliminates the need to weigh vials before and after the run and eliminates data entry for calculating Kv.
- The MicroFD can be used to develop and transfer a cycle successfully.

Next: Develop Optimized Transferable Protocols Using 19 Vials

Quanta

Thank you!

Questions?

tn@millrocktech.com 845-339-5700

MicroFD and REVO Kv AccuFlux and Kv Gravimetric

-20°C 100mT	Kv AccuFlux Center	Kv Grav Center	Kv Grav Center	Kv Grav Center	Kv <mark>AccuFlux</mark> Edge	Kv Grav Edge Outer 2 rings	Kv Grav Edge Outer 3 rings	Kv Grav Accuflux Edge vials	Batch Average Kv Grav	Batch Average Kv Accuflux
MicroFD	22.16	22.08 (19 vials)	22.53 (Inner 7)	21.82 (Outer 12)	/	/	/	/	/	/
MicroFD*	20.66	20.47	20.88	20.23	/	/	/	/	/	/
REVO	18.01	19.18 (8x24 vials)	18.92 (4x20 vials)	18.90 (6 center vials)	23.71	24.50	23.08	23.48	21.46	20.86
REVO*	17.40	18.49	18.24	18.23	22.23	23.63	22.25	22.65	20.70	19.82

^{*}Measured using shelf inlet temp


Transfer using Kv inlet results

Shelf Temperature Transfer Concept

MicroFD Source Revo Target

