

Nanoparticle-based Drug Delivery Systems (references)

- Nanosuspensions and nanocrystals
 - Rabinow, B.E. (2004) Nat. Rev. Drug Discov., 3, 785-796.
 - Müller, R.H.; Jacobs, C. and Kayser, O. (2001) Adv. Drug Deliv. Rev., 47, 3-19.
 - Merisko-Liversidge, E.; Liversidge, G.G. and Cooper, E.R. (2003) *Eur. J. Pharm. Sci.*, **18**, 113-120. Sarkari, M; Brown, J.; Chen, X.; Swinnea, S. and Williams, R.O.3rd and Johnston, K.P. (2002) *Int. J. Pharm.*, **243**, 17-31.
- Solid lipid nanoparticles
- Kipp, J. (2004) *Int. J. Pharm.*, **284**, 109-122. Wissing, S.A.; Kayser, O. and Müller, R.H. (2004) *Adv. Drug.Deliv. Rev.*, **56**, 1257-1272. Fundaro, A.; Cavalli, R.; Bargoni, A.; Vighetto, D.; Zara, G.P. and Gasco, M.R. (2000) *Pharmacol. Res.*, **42**, 337-343.
- Maia, C.S; Mehnert, W. and Schäfer-Korting, M. (2000) *Int. J.Pharm.*, **196**, 165-167. Dingler, A.; Blum, R.P.; Niehus, H.; Müller, R.H. and Gohla, S. (1999) *J. Microencapsul.*, **16**, 751-767. _
- Polymeric nanoparticles
 - Fattal, E.; Vauthier, C.; Aynie, I.; Nakada, Y.; Lambert, G.; Malvy, C. and Couvreur P. (1998) J. Control. Release, 53, 137-143.
 - Fernandez-Urrusuno, R.; Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J.L. and Alonso, M.J. (1999) Pharm. Res., 16, 1576-1581.
 - Farrugia, C.A. and Groves, M.J. (1999) Anticancer Res., 19, 1027-1031.
 - Farrugia, C.A. and Groves, M.J. (1999) J. Pharm. Pharmacol., 51, 643-649.
 - Aynie, I.; Vauthier, C.; Chacun, H.; Fattal, E. and Couvreur, P. (1999) Antisense Nucleic Acid Drug. Dev., 9, 301-312. _
 - _ Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R. and Rudzinski, W.E. (2001) J. Control. Release, 70, 1-20.

Applications of Microemulsion Based Drug Delivery System, Jadhav, K. R. etal, Current Drug Question: What about microemulsions? What are Delivery, Volume 3, Number 3, July 2006, pp. their advantages and disadvantages? (potential 267-273(7) report topic) **NJ Center for Engineered Particulates** 11

Nanoparticulate-based technologies.						
Technology	Company	Approach	Focus of applications			
Stealth Liposomes	Alza/J&J	Drug-carrying liposomes	Enhanced circulatory persistence			
NanoCrystal	Elan	Drugs reduced to nanometre-sized particles by wet milling: formulated with stabilizers to prevent reagglomeration	Improving drug solubility			
IDD	SkyePharma	Nanometre-sized drug particles produced by homogenization	Improving drug solubility			
Nanoedge	Baxter	Drug particles reduced to nanometre size range by homogenization or microprecipitation	Improving drug solubility			
BioAqueous	Dow	Precipitation, cryogenic and emulsion technologies	Improving drug solubility			
Bioral Technology	BioDelivery Sciences International	Nanocochleate delivery vehicles comprising stable phospholipid-cation precipitates	Oral delivery of injectable drugs and vaccine delivery			
Calcium phosphate nanoparticles (CAP)	BioSante	Nanoparticles based on calcium phosphate	Delivery of proteins, for example insulin and as vaccine adjuvants			

Napostructured materia	Example Te	es of Commer echnologies	cial
BioSilicon	pSivida/pSiMedica	Drugs and other therapeutics nanostructured within BioSilicon microparticles or other BioSilicon structures, for example, fabrics, fibres, implants	Improves solubility of hydrophobic drugs; controlled release of a wide range of compounds; drug delivery in orthopaedics and other applica- tions; potential for 'smart' drug delivery systems
NanoGate	IMEDD	Silicon membrane with 10–100 nm wide pores as part of an implantable system	Drug delivery and biofiltration
DebloSTAR	DebioTECH	Porous silicon membrane as part of an implantable device	Drug delivery
	zine.com: nano	technology applications for	drug delivery

SCFs						
Fluid	P _c (bar)	$ ho_{c}$ (kg m ⁻³)	Т _с (К)			
Carbon Dioxide	73.77	467.6	304.13			
Methane	45.92	162.7	190.56			
Ethane	48.72	206.6	305.33			
Water	220.64	322.0	647.10			

Supercritical Fluid Processes	Role SCF	Specifications
Depressurization Crystallization		
RESS	Solvent	200-400 bar
PGSS	Solute	30-200 °С
DELOS	Cosolvent	50-100 µm nozzle
Antisolvent Crystallization	Antisolvent	70-200 bar
		30-100 °C 50-100 μm nozzle
Crystallization by Reactions Using SCF		
• Thermal decomposition of metal precursors	Reaction Media	200-500 bar
 Hydrolysis of metal precursors 	Reactant	
• Reverse Micelles	Bulk	

Power	Size	Size	Standard
supplied	Num. avg.	Vol. avg.	deviation
(W)	(nm)	(nm)	(nm)
0	1200	2000	640
12	730	1040	490
30	650	860	410
60	240	260	75
90	260	370	180
120	230	360	160

Tetracyc	line Part	icles froi	m SAS-E	M
Power supplied	Particle size Num. avg.	Particle size Vol. avg.	Standard deviation	
(W)	(nm)	(nm)	(nm)	
0	800	1100	970	
30	270	400	380	
60	200	230	172	
90	184	200	133	
120	110	125	75	
Experiments conduct	ed at 96.5 bar and	37°C using 5 mg/	/ml tetracycline di	ssolved in THF
инстинетие незамок синте год Блистине О Фармис Рантирила Systems сполнорацију 29, г.; Сирта, радице имкензат ни зејен интитите от теоноског интирист от накто лисо ат накладите	Ram B. <i>Ind. Eng. Che</i> 58	m. Res. (2001), 40(16 NJ Center	i), 3530-3539 for Engineered Pa	rticulates

Commercialization

Patent Issued:

Method of forming nanoparticles and microparticles of controllable size using supercritical fluids with enhanced mass transfer, US Patent 6,620,351; September 16, 2003.

<u>Technology Licensed:</u> Thar Technologies, Pittsburgh, PA www.thartech.com

Scaled Up: 1 kg/day nanoparticles Automated, computer controlled Continuous collection

NJ Center for Engineere

Effects of Mw on Particles							
Nozzle ID: Pressure: Temp: 35 PVP (Mw: Solvent: D Solute Co	40um 82 Bar C Qsol: 0.2 1,300,000) DCM ncentration:	Mozzie ID: Pressure: ml/min Temp: 35 PVP (Mw: Solvent: E 2% Solute Co	40um 82 Bar C Qsol: 0.2 ml/min 360,000) DCM ncentration: 2%				
	Pressure	DCM(100) /Acetone(0)	DCM(40) /Acetone(60)				
Mw: 1,300,000	79 Bar	340 <u>+</u> 150 nm	200 <u>+</u> 80 nm				
	82 Bar	290 ±120 nm	250 _± 55 nm				
Mw: 360,000	79 Bar	310 _{±150} nm	180 _± 90 nm				
ENVIREMENT RESEARCH CHIER FOR STRUCTURED ORGANIC PARTICULATE S RUTGRS UNVERSITY PURDLE UNVERSITY NEW JERSET INSTITUTE OF TECHNOLOGY UNIVERSITY OF PURTO RUCO AT MATAGUEZ	^{ISTEMS} 82 Bar 77	280±100 nm NJ Center for	170 ₊₅₀ nm Engineered Particulates				

■ Exp	periment
•	Coating Material: Poly lactide-co-glycolide (PLGA, MW, 12,000, 50/50). Eudragit RL 100 (copolymer of acrylic and methacrylic acid esters, MW: ~150,000).
•	Host Particles: Silica particles, 16 nm (hydrophobic), 20 nm (hydrophilic), 500 nm (synthesized).
•	Operating Parameters: a. Polymer concentration (mg /ml): 4.0-13.0. b. Polymer weight fraction (%): 12.5, 16.7, 25, 50. c. Pressure (bars): 1300-1600 psi. d. Temperature: 32.0-38.0 °C.
•	Characterization: FESEM, TEM-EELS, FT-IR, TGA, PSD
ENVIRENTING RESEARCH CONTRA YON STRUCTURED ORGANIC PARTICULA RUTCING UNVERSITY NUMBER INVERSITY NEW RESET NEW RESET	It Systems It Sys

			Drug Loadi	ng Test		
1	No	Ratio of HC to PLGA (wt.)	Theoretical HC Loading (wt%)	True Loading (wt.%)	Average (%)	SD
1	1	1:4	80%	82.2 82.7	80.8	<u>+</u> 29
				77.5		
	2	1.2	66.7%	63.6	64.9	⊥ 4 1
4	-	1.2	00.770	69.5 61.7	- 04.5	<u>-</u>
				45.1		
3	3	1:1	50%	46.6	46.4	<u>+</u> 1.2
				47.5	1	
_		1:1 Co-		46.3		<u>+</u> 3.4
2	4	from DCM and	50%	47.7	48.9	
		EtOH		52.7		
_	_	1:1 Co-		52.9		<u>+</u> 1.5
Ę	5	from acetone	50%	55.7	54.0	
				53.5		

		En	capsulation Effi	ciency		
	No.	Ratio of HC to PLGA (wt.)	Encapsulation Efficiency (wt.%)	Average (%)	SD	
	1	1:4	0		<u>0</u>	
	2	1:2	8.4 6.3	6.7	<u>+</u> 1.4	
	3	1:1	5.4 21.5 25.2	22.6	<u>+</u> 2.3	
			21.2			
	4	1:1 Co- presipitation from DCM and	0	0		
	5	FPCo- precipitation from acetone	0	0		
Runger Purbu News News News News News	EERING RESEARCH CENTER FOR CTURED ORGANIC PARTICU RE UNIVERSITY REUNVERSITY RESET OF RECENT RICO AT MAYA	LATE SYSTEMS ov cuez 130	NJ Center	r for Engineere	d Particu	lates

